ترغب بنشر مسار تعليمي؟ اضغط هنا

Operads of decorated cliques I: Construction and quotients

135   0   0.0 ( 0 )
 نشر من قبل Samuele Giraudo
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Samuele Giraudo




اسأل ChatGPT حول البحث

We introduce a functorial construction $mathsf{C}$ which takes unitary magmas $mathcal{M}$ as input and produces operads. The obtained operads involve configurations of chords labeled by elements of $mathcal{M}$, called $mathcal{M}$-decorated cliques and generalizing usual configurations of chords. By considering combinatorial subfamilies of $mathcal{M}$-decorated cliques defined, for instance, by limiting the maximal number of crossing diagonals or the maximal degree of the vertices, we obtain suboperads and quotients of $mathsf{C} mathcal{M}$. This leads to a new hierarchy of operads containing, among others, operads on noncrossing configurations, Motzkin configurations, forests, dissections of polygons, and involutions. Besides, the construction $mathsf{C}$ leads to alternative definitions of the operads of simple and double multi-tildes, and of the gravity operad.



قيم البحث

اقرأ أيضاً

A new hierarchy of operads over the linear spans of $delta$-cliffs, which are some words of integers, is introduced. These operads are intended to be analogues of the operad of permutations, also known as the associative symmetric operad. We obtain o perads whose partial compositions can be described in terms of intervals of the lattice of $delta$-cliffs. These operads are very peculiar in the world of the combinatorial operads since, despite to the relative simplicity for their construction, they are infinitely generated and they have nonquadratic and nonhomogeneous nontrivial relations. We provide a general construction for some of their quotients. We use it to endow the spaces of permutations, $m$-increasing trees, $c$-rectangular paths, and $m$-Dyck paths with operad structures. The operads on $c$-rectangular paths admit, as Koszul duals, operads generalizing the duplicial and triplicial operads.
We propose a new way of defining and studying operads on multigraphs and similar objects. For this purpose, we use the combinatorial species setting. We study in particular two operads obtained with our method. The former is a direct generalization o f the Kontsevich-Willwacher operad. This operad can be seen as a canonical operad on multigraphs, and has many interesting suboperads. The latter operad is a natural extension of the pre-Lie operad in a sense developed here and it is related to the multigraph operad. We also present various results on some of the finitely generated suboperads of the multigraph operad and establish links between them and the commutative operad and the commutative magmatic operad.
Using the combinatorial species setting, we propose two new operad structures on multigraphs and on pointed oriented multigraphs. The former can be considered as a canonical operad on multigraphs, directly generalizing the Kontsevich-Willwacher opera d, and has many interesting suboperads. The latter is a natural extension of the pre-Lie operad in a sense developed here and related to the multigraph operad. We study some of the finitely generated suboperads of the multigraph operad and establish links between them and the commutative operad and the commutative magmatic operad.
106 - Samuele Giraudo 2020
Pairs of graded graphs, together with the Fomin property of graded graph duality, are rich combinatorial structures providing among other a framework for enumeration. The prototypical example is the one of the Young graded graph of integer partitions , allowing us to connect number of standard Young tableaux and numbers of permutations. Here, we use operads, that algebraic devices abstracting the notion of composition of combinatorial objects, to build pairs of graded graphs. For this, we first construct a pair of graded graphs where vertices are syntax trees, the elements of free nonsymmetric operads. This pair of graphs is dual for a new notion of duality called $phi$-diagonal duality, similar to the ones introduced by Fomin. We also provide a general way to build pairs of graded graphs from operads, wherein underlying posets are analogous to the Young lattice. Some examples of operads leading to new pairs of graded graphs involving integer compositions, Motzkin paths, and $m$-trees are considered.
Motzkin and Straus established a close connection between the maximum clique problem and a solution (namely graph-Lagrangians) to the maximum value of a class of homogeneous quadratic multilinear functions over the standard simplex of the Euclidean s pace in 1965. This connection provides a new proof of Turans theorem. Recently, an extension of Motzkin-Straus theorem was proved for non-uniform hypergraphs whose edges contain 1 or 2 vertices in cite{PPTZ}. It is interesting if similar results hold for other non-uniform hypergraphs. In this paper, we give some connection between polynomial programming and the clique of non-uniform hypergraphs whose edges contain 1, or 2, and more vertices. Specifically, we obtain some Motzkin-Straus type results in terms of the graph-Lagrangian of non-uniform hypergraphs whose edges contain 1, or 2, and more vertices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا