ﻻ يوجد ملخص باللغة العربية
Pairs of graded graphs, together with the Fomin property of graded graph duality, are rich combinatorial structures providing among other a framework for enumeration. The prototypical example is the one of the Young graded graph of integer partitions, allowing us to connect number of standard Young tableaux and numbers of permutations. Here, we use operads, that algebraic devices abstracting the notion of composition of combinatorial objects, to build pairs of graded graphs. For this, we first construct a pair of graded graphs where vertices are syntax trees, the elements of free nonsymmetric operads. This pair of graphs is dual for a new notion of duality called $phi$-diagonal duality, similar to the ones introduced by Fomin. We also provide a general way to build pairs of graded graphs from operads, wherein underlying posets are analogous to the Young lattice. Some examples of operads leading to new pairs of graded graphs involving integer compositions, Motzkin paths, and $m$-trees are considered.
A new hierarchy of operads over the linear spans of $delta$-cliffs, which are some words of integers, is introduced. These operads are intended to be analogues of the operad of permutations, also known as the associative symmetric operad. We obtain o
Using the combinatorial species setting, we propose two new operad structures on multigraphs and on pointed oriented multigraphs. The former can be considered as a canonical operad on multigraphs, directly generalizing the Kontsevich-Willwacher opera
We introduce a functorial construction $mathsf{C}$ which takes unitary magmas $mathcal{M}$ as input and produces operads. The obtained operads involve configurations of chords labeled by elements of $mathcal{M}$, called $mathcal{M}$-decorated cliques
Sparse graphs and their associated matroids play an important role in rigidity theory, where they capture the combinatorics of generically rigid structures. We define a new family called {bf graded sparse graphs}, arising from generically pinned (com
We consider two operations on an edge of an embedded graph (or equivalently a ribbon graph): giving a half-twist to the edge and taking the partial dual with respect to the edge. These two operations give rise to an action of S_3^{|E(G)|}, the ribbon