ﻻ يوجد ملخص باللغة العربية
We present a robust version of the life-cycle optimal portfolio choice problem in the presence of labor income, as introduced in Biffis, Gozzi and Prosdocimi (Optimal portfolio choice with path dependent labor income: the infinite horizon case, SIAM Journal on Control and Optimization, 58(4), 1906-1938.) and Dybvig and Liu (Lifetime consumption and investment: retirement and constrained borrowing, Journal of Economic Theory, 145, pp. 885-907). In particular, in Biffis, Gozzi and Prosdocimi the influence of past wages on the future ones is modelled linearly in the evolution equation of labor income, through a given weight function. The optimization relies on the resolution of an infinite dimensional HJB equation. We improve the state of art in three ways. First, we allow the weight to be a Radon measure. This accommodates for more realistic weighting of the sticky wages, like e.g. on a discrete temporal grid according to some periodic income. Second, there is a general correlation structure between labor income and stocks market. This naturally affects the optimal hedging demand, which may increase or decrease according to the correlation sign. Third, we allow the weight to change with time, possibly lacking perfect identification. The uncertainty is specified by a given set of Radon measures $K$, in which the weight process takes values. This renders the inevitable uncertainty on how the past affects the future, and includes the standard case of error bounds on a specific estimate for the weight. Under uncertainty averse preferences, the decision maker takes a maxmin approach to the problem. Our analysis confirms the intuition: in the infinite dimensional setting, the optimal policy remains the best investment strategy under the worst case weight.
This paper extends the project initiated in arXiv:2002.00201 and studies a lifecycle portfolio choice problem with borrowing constraints and finite retirement time in which an agent receives labor income that adjusts to financial market shocks in a p
We study portfolio selection in a model with both temporary and transient price impact introduced by Garleanu and Pedersen (2016). In the large-liquidity limit where both frictions are small, we derive explicit formulas for the asymptotically optimal
We extend Relative Robust Portfolio Optimisation models to allow portfolios to optimise their distance to a set of benchmarks. Portfolio managers are also given the option of computing regret in a way which is more in line with market practices than
We analyze novel portfolio liquidation games with self-exciting order flow. Both the N-player game and the mean-field game are considered. We assume that players trading activities have an impact on the dynamics of future market order arrivals thereb
This paper studies a portfolio allocation problem, where the goal is to prescribe the wealth distribution at the final time. We study this problem with the tools of optimal mass transport. We provide a dual formulation which we solve by a gradient de