ﻻ يوجد ملخص باللغة العربية
We analyze novel portfolio liquidation games with self-exciting order flow. Both the N-player game and the mean-field game are considered. We assume that players trading activities have an impact on the dynamics of future market order arrivals thereby generating an additional transient price impact. Given the strategies of her competitors each player solves a mean-field control problem. We characterize open-loop Nash equilibria in both games in terms of a novel mean-field FBSDE system with unknown terminal condition. Under a weak interaction condition we prove that the FBSDE systems have unique solutions. Using a novel sufficient maximum principle that does not require convexity of the cost function we finally prove that the solution of the FBSDE systems do indeed provide existence and uniqueness of open-loop Nash equilibria.
We consider a mean field game (MFG) of optimal portfolio liquidation under asymmetric information. We prove that the solution to the MFG can be characterized in terms of a FBSDE with possibly singular terminal condition on the backward component or,
In this paper we study a class of time-inconsistent terminal Markovian control problems in discrete time subject to model uncertainty. We combine the concept of the sub-game perfect strategies with the adaptive robust stochastic to tackle the theoret
We propose a Markov regime switching GARCH model with multivariate normal tempered stable innovation to accommodate fat tails and other stylized facts in returns of financial assets. The model is used to simulate sample paths as input for portfolio o
We investigate the optimal portfolio deleveraging (OPD) problem with permanent and temporary price impacts, where the objective is to maximize equity while meeting a prescribed debt/equity requirement. We take the real situation with cross impact amo
Based on a rough path foundation, we develop a model-free approach to stochastic portfolio theory (SPT). Our approach allows to handle significantly more general portfolios compared to previous model-free approaches based on Follmer integration. With