ﻻ يوجد ملخص باللغة العربية
(Renegar, 2016) introduced a novel approach to transforming generic conic optimization problems into unconstrained, uniformly Lipschitz continuous minimization. We introduce radial transformations generalizing these ideas, equipped with an entirely new motivation and development that avoids any reliance on convex cones or functions. Perhaps of greatest practical importance, this facilitates the development of new families of projection-free first-order methods applicable even in the presence of nonconvex objectives and constraint sets. Our generalized construction of this radial transformation uncovers that it is dual (i.e., self-inverse) for a wide range of functions including all concave objectives. This gives a powerful new duality relating optimization problems to their radially dual problem. For a broad class of functions, we characterize continuity, differentiability, and convexity under the radial transformation as well as develop a calculus for it. This radial duality provides a strong foundation for designing projection-free radial optimization algorithms, which is carried out in the second part of this work.
The first part of this work established the foundations of a radial duality between nonnegative optimization problems, inspired by the work of (Renegar, 2016). Here we utilize our radial duality theory to design and analyze projection-free optimizati
A geometric setup for control theory is presented. The argument is developed through the study of the extremals of action functionals defined on piecewise differentiable curves, in the presence of differentiable non-holonomic constraints. Special emp
Density expansions for hypoelliptic diffusions $(X^1,...,X^d)$ are revisited. In particular, we are interested in density expansions of the projection $(X_T^1,...,X_T^l)$, at time $T>0$, with $l leq d$. Global conditions are found which replace the w
Signal processing over single-layer graphs has become a mainstream tool owing to its power in revealing obscure underlying structures within data signals. For generally, many real-life datasets and systems are characterized by more complex interactio
The problem of computing spectra of operators is arguably one of the most investigated areas of computational mathematics. Recent progress and the current paper reveal that, unlike the finite-dimensional case, infinite-dimensional problems yield a hi