ﻻ يوجد ملخص باللغة العربية
Non-Hermitian dynamics has been widely studied to enhance the precision of quantum sensing; and non-reciprocity can be a powerful resource for non-Hermitian quantum sensing, as non-reciprocity allows to arbitrarily exceed the fundamental bound on the measurement rate of any reciprocal sensors. Here we establish fundamental limits on signal-to-noise ratio for reciprocal and non-reciprocal non-Hermitian quantum sensing. In particular, for two-mode linear systems with two coherent drives, an approximately attainable uniform bound on the best possible measurement rate per photon is derived for both reciprocal and non-reciprocal sensors. This bound is only related to the coupling coefficients and, in principle, can be made arbitrarily large. Our results thus demonstrate that a conventional reciprocal sensor with two drives can simulate any non-reciprocal sensor. This work also demonstrates a clear signature on how the excitation signals affect the signal-to-noise ratio in non-Hermitian quantum sensing.
We report strongly non-reciprocal behaviour for quantum dot exciton spins coupled to nano-photonic waveguides under resonant laser excitation. A clear dependence of the transmission spectrum on the propagation direction is found for a chirally-couple
Plasmonics aims to interface photonics and electronics. Finding optical, near-field analogues of much used electro-technical components is crucial to the success of such a platform. Here we present the plasmonic analogue of a non-reciprocal antenna.
A fundamental prediction of quantum mechanics is that there are random fluctuations everywhere in a vacuum because of the zero-point energy. Remarkably, quantum electromagnetic fluctuations can induce a measurable force between neutral objects, known
Non-Hermiticity from non-reciprocal hoppings has been shown recently to demonstrate the non-Hermitian skin effect (NHSE) under open boundary conditions (OBCs). Here we study the interplay of this effect and the Anderson localization in a textit{non-r
Using two cold-neutron triple-axis spectrometers we have succeeded in fully mapping out the field-dependent evolution of the non-reciprocal magnon dispersion relations in all magnetic phases of MnSi. The non-reciprocal nature of the dispersion manife