ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-Reciprocal Transmission and Reflection of a Chirally-Coupled Quantum Dot

72   0   0.0 ( 0 )
 نشر من قبل David Hurst
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report strongly non-reciprocal behaviour for quantum dot exciton spins coupled to nano-photonic waveguides under resonant laser excitation. A clear dependence of the transmission spectrum on the propagation direction is found for a chirally-coupled quantum dot, with spin up and spin down exciton spins coupling to the left and right propagation directions respectively. The reflection signal shows an opposite trend to the transmission, which a numerical model indicates is due to direction-selective saturation of the quantum dot. The chiral spin-photon interface we demonstrate breaks reciprocity of the system and opens the way to spin-based quantum optical components such as optical diodes and circulators in a chip-based solid-state environment.



قيم البحث

اقرأ أيضاً

194 - G. Y. Chen , Y. N. Chen , 2008
The radiative decay of quantum dot (QD) excitons into surface plasmons in a cylindrical nanowire is investigated theoretically. Maxwells equations with appropriate boundary conditions are solved numerically to obtain the dispersion relations of surfa ce plasmons. The radiative decay rate of QD excitons is found to be greatly enhanced at certain values of the exciton bandgap. Analogous to the decay of a two-level atom in the photonic crystal, we first point out that such an enhanced phenomenon allows one to examine the non-Markovian dynamics of the QD exciton. Besides, due to the one dimensional propagating feature of nanowire surface plasmons, remote entangled states can be generated via super-radiance and may be useful in future quantum information processing.
We experimentally demonstrate that the Mollow triplet sidebands of a quantum dot strongly coupled to a cavity exhibit anomalous power induced broadening and enhanced emission when one sideband is tuned over the cavity frequency. We observe a nonlinea r increase of the sideband linewidth with excitation power when the Rabi frequency exceeds the detuning between the quantum dot and the cavity, consistent with a recent theoretical model that accounts for acoustic phonon-induced processes between the exciton and the cavity. In addition, the sideband tuned to the cavity shows strong resonant emission enhancement.
Cavities embedded in photonic crystal waveguides offer a promising route towards large scale integration of coupled resonators for quantum electrodynamics applications. In this letter, we demonstrate a strongly coupled system formed by a single quant um dot and such a photonic crystal cavity. The resonance originating from the cavity is clearly identified from the photoluminescence mapping of the out-of-plane scattered signal along the photonic crystal waveguide. The quantum dot exciton is tuned towards the cavity mode by temperature control. A vacuum Rabi splitting of ~ 140 mueV is observed at resonance.
The spin of an electron in a self-assembled InAs/GaAs quantum dot molecule is optically prepared and measured through the trion triplet states. A longitudinal magnetic field is used to tune two of the trion states into resonance, forming a superposit ion state through asymmetric spin exchange. As a result, spin-flip Raman transitions can be used for optical spin initialization, while separate trion states enable cycling transitions for non-destructive measurement. With two-laser transmission spectroscopy we demonstrate both operations simultaneously, something not previously accomplished in a single quantum dot.
We propose a controllable non-reciprocal transmission model. The model consists of a Mobius ring, which is connected with two one-dimensional semi-infinite chains, and with a two-level atom located inside one of the cavities of the Mobius ring. We us e the method of Green function to study the transmittance of a single photon through the model. The results show that the non-reciprocal transmission can be achieved in this model and the two-level atom can behave as a quantum switch for the non-reciprocal transport of the single photon. This controllable non-reciprocal transmission model may inspire new quantum non-reciprocal devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا