ترغب بنشر مسار تعليمي؟ اضغط هنا

Finite Difference Nets: A Deep Recurrent Framework for Solving Evolution PDEs

177   0   0.0 ( 0 )
 نشر من قبل Liu Liu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

There has been an arising trend of adopting deep learning methods to study partial differential equations (PDEs). In this paper, we introduce a deep recurrent framework for solving time-dependent PDEs without generating large scale data sets. We provide a new perspective, that is, a different type of architecture through exploring the possible connections between traditional numerical methods (such as finite difference schemes) and deep neural networks, particularly convolutional and fully-connected neural networks. Our proposed approach will show its effectiveness and efficiency in solving PDE models with an integral form, in particular, we test on one-way wave equations and system of conservation laws.



قيم البحث

اقرأ أيضاً

Recent works have shown that deep neural networks can be employed to solve partial differential equations, giving rise to the framework of physics informed neural networks. We introduce a generalization for these methods that manifests as a scaling p arameter which balances the relative importance of the different constraints imposed by partial differential equations. A mathematical motivation of these generalized methods is provided, which shows that for linear and well-posed partial differential equations, the functional form is convex. We then derive a choice for the scaling parameter that is optimal with respect to a measure of relative error. Because this optimal choice relies on having full knowledge of analytical solutions, we also propose a heuristic method to approximate this optimal choice. The proposed methods are compared numerically to the original methods on a variety of model partial differential equations, with the number of data points being updated adaptively. For several problems, including high-dimensional PDEs the proposed methods are shown to significantly enhance accuracy.
We introduce a simple, rigorous, and unified framework for solving nonlinear partial differential equations (PDEs), and for solving inverse problems (IPs) involving the identification of parameters in PDEs, using the framework of Gaussian processes. The proposed approach: (1) provides a natural generalization of collocation kernel methods to nonlinear PDEs and IPs; (2) has guaranteed convergence for a very general class of PDEs, and comes equipped with a path to compute error bounds for specific PDE approximations; (3) inherits the state-of-the-art computational complexity of linear solvers for dense kernel matrices. The main idea of our method is to approximate the solution of a given PDE as the maximum a posteriori (MAP) estimator of a Gaussian process conditioned on solving the PDE at a finite number of collocation points. Although this optimization problem is infinite-dimensional, it can be reduced to a finite-dimensional one by introducing additional variables corresponding to the values of the derivatives of the solution at collocation points; this generalizes the representer theorem arising in Gaussian process regression. The reduced optimization problem has the form of a quadratic objective function subject to nonlinear constraints; it is solved with a variant of the Gauss--Newton method. The resulting algorithm (a) can be interpreted as solving successive linearizations of the nonlinear PDE, and (b) in practice is found to converge in a small number of iterations (2 to 10), for a wide range of PDEs. Most traditional approaches to IPs interleave parameter updates with numerical solution of the PDE; our algorithm solves for both parameter and PDE solution simultaneously. Experiments on nonlinear elliptic PDEs, Burgers equation, a regularized Eikonal equation, and an IP for permeability identification in Darcy flow illustrate the efficacy and scope of our framework.
70 - Haiyu Zou , Yingjie Liu 2021
A new finite difference method on irregular, locally perturbed rectangular grids has been developed for solving electromagnetic waves around curved perfect electric conductors (PEC). This method incorporates the back and forth error compensation and correction method (BFECC) and level set method to achieve convenience and higher order of accuracy at complicated PEC boundaries. A PDE-based local second order ghost cell extension technique is developed based on the level set framework in order to compute the boundary value to first order accuracy (cumulatively), and then BFECC is applied to further improve the accuracy while increasing the CFL number. Numerical experiments are conducted to validate the properties of the method.
In this work, we derive a nonstandard finite difference scheme for the SICA (Susceptible-Infected-Chronic-AIDS) model and analyze the dynamical properties of the discretized system. We prove that the discretized model is dynamically consistent with t he continuous, maintaining the essential properties of the standard SICA model, namely, the positivity and boundedness of the solutions, equilibrium points, and their local and global stability.
201 - Jing Sun , Weihua Deng , Daxin Nie 2021
We make the split of the integral fractional Laplacian as $(-Delta)^s u=(-Delta)(-Delta)^{s-1}u$, where $sin(0,frac{1}{2})cup(frac{1}{2},1)$. Based on this splitting, we respectively discretize the one- and two-dimensional integral fractional Laplaci an with the inhomogeneous Dirichlet boundary condition and give the corresponding truncation errors with the help of the interpolation estimate. Moreover, the suitable corrections are proposed to guarantee the convergence in solving the inhomogeneous fractional Dirichlet problem and an $mathcal{O}(h^{1+alpha-2s})$ convergence rate is obtained when the solution $uin C^{1,alpha}(bar{Omega}^{delta}_{n})$, where $n$ is the dimension of the space, $alphain(max(0,2s-1),1]$, $delta$ is a fixed positive constant, and $h$ denotes mesh size. Finally, the performed numerical experiments confirm the theoretical results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا