ﻻ يوجد ملخص باللغة العربية
In this work, we derive a nonstandard finite difference scheme for the SICA (Susceptible-Infected-Chronic-AIDS) model and analyze the dynamical properties of the discretized system. We prove that the discretized model is dynamically consistent with the continuous, maintaining the essential properties of the standard SICA model, namely, the positivity and boundedness of the solutions, equilibrium points, and their local and global stability.
In this article, a numerical scheme is introduced for solving the fractional partial differential equation (FPDE) arising from electromagnetic waves in dielectric media (EMWDM) by using an efficient class of finite difference methods. The numerical s
In this paper, we develop a high order residual distribution (RD) method for solving steady state conservation laws in a novel Hermite weighted essentially non-oscillatory (HWENO) framework recently developed in [23]. In particular, we design a high
There has been an arising trend of adopting deep learning methods to study partial differential equations (PDEs). In this paper, we introduce a deep recurrent framework for solving time-dependent PDEs without generating large scale data sets. We prov
We present an efficient second-order finite difference scheme for solving the 2D sine-Gordon equation, which can inherit the discrete energy conservation for the undamped model theoretically. Due to the semi-implicit treatment for the nonlinear term,
We make the split of the integral fractional Laplacian as $(-Delta)^s u=(-Delta)(-Delta)^{s-1}u$, where $sin(0,frac{1}{2})cup(frac{1}{2},1)$. Based on this splitting, we respectively discretize the one- and two-dimensional integral fractional Laplaci