ﻻ يوجد ملخص باللغة العربية
YouTube has become the second most popular website according to Alexa, and it represents an enticing platform for scammers to attract victims. Because of the computational difficulty of classifying multimedia, identifying scams on YouTube is more difficult than text-based media. As a consequence, the research community to-date has provided little insight into the prevalence, lifetime, and operational patterns of scammers on YouTube. In this short paper, we present a preliminary exploration of scam videos on YouTube. We begin by identifying 74 search queries likely to lead to scam videos based on the authors experience seeing scams during routine browsing. We then manually review and characterize the results to identify 668 scams in 3,700 videos. In a detailed analysis of our classifications and metadata, we find that these scam videos have a median lifetime of nearly nine months, and many rely on external websites for monetization. We also explore the potential of detecting scams from metadata alone, finding that metadata does not have enough predictive power to distinguish scams from legitimate videos. Our work demonstrates that scams are a real problem for YouTube users, motivating future work on this topic.
As the COVID-19 pandemic emerged in early 2020, a number of malicious actors have started capitalizing the topic. Although a few media reports mentioned the existence of coronavirus-themed mobile malware, the research community lacks the understandin
Recently emerging Decentralized Finance (DeFi) takes the promise of cryptocurrencies a step further, leveraging their decentralized networks to transform traditional financial products into trustless and transparent protocols that run without interme
As the indispensable trading platforms of the ecosystem, hundreds of cryptocurrency exchanges are emerging to facilitate the trading of digital assets. While, it also attracts the attentions of attackers. A number of scam attacks were reported target
Mobile apps are extensively involved in cyber-crimes. Some apps are malware which compromise users devices, while some others may lead to privacy leakage. Apart from them, there also exist apps which directly make profit from victims through deceivin
We are in the dawn of deep learning explosion for smartphones. To bridge the gap between research and practice, we present the first empirical study on 16,500 the most popular Android apps, demystifying how smartphone apps exploit deep learning in th