ﻻ يوجد ملخص باللغة العربية
We are in the dawn of deep learning explosion for smartphones. To bridge the gap between research and practice, we present the first empirical study on 16,500 the most popular Android apps, demystifying how smartphone apps exploit deep learning in the wild. To this end, we build a new static tool that dissects apps and analyzes their deep learning functions. Our study answers threefold questions: what are the early adopter apps of deep learning, what do they use deep learning for, and how do their deep learning models look like. Our study has strong implications for app developers, smartphone vendors, and deep learning R&D. On one hand, our findings paint a promising picture of deep learning for smartphones, showing the prosperity of mobile deep learning frameworks as well as the prosperity of apps building their cores atop deep learning. On the other hand, our findings urge optimizations on deep learning models deployed on smartphones, the protection of these models, and validation of research ideas on these models.
We conduct to our knowledge a first measurement study of commercial 5G performance on smartphones by closely examining 5G networks of three carriers (two mmWave carriers, one mid-band carrier) in three U.S. cities. We conduct extensive field tests on
The introduction of the generative adversarial imitation learning (GAIL) algorithm has spurred the development of scalable imitation learning approaches using deep neural networks. The GAIL objective can be thought of as 1) matching the expert policy
The worldwide spread of COVID-19 has prompted extensive online discussions, creating an `infodemic on social media platforms such as WhatsApp and Twitter. However, the information shared on these platforms is prone to be unreliable and/or misleading.
Digital contact tracing apps for COVID, such as the one developed by Google and Apple, need to estimate the risk that a user was infected during a particular exposure, in order to decide whether to notify the user to take precautions, such as enterin
We study how the behavior of deep policy gradient algorithms reflects the conceptual framework motivating their development. To this end, we propose a fine-grained analysis of state-of-the-art methods based on key elements of this framework: gradient