ترغب بنشر مسار تعليمي؟ اضغط هنا

A First Look at Deep Learning Apps on Smartphones

209   0   0.0 ( 0 )
 نشر من قبل Mengwei Xu
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We are in the dawn of deep learning explosion for smartphones. To bridge the gap between research and practice, we present the first empirical study on 16,500 the most popular Android apps, demystifying how smartphone apps exploit deep learning in the wild. To this end, we build a new static tool that dissects apps and analyzes their deep learning functions. Our study answers threefold questions: what are the early adopter apps of deep learning, what do they use deep learning for, and how do their deep learning models look like. Our study has strong implications for app developers, smartphone vendors, and deep learning R&D. On one hand, our findings paint a promising picture of deep learning for smartphones, showing the prosperity of mobile deep learning frameworks as well as the prosperity of apps building their cores atop deep learning. On the other hand, our findings urge optimizations on deep learning models deployed on smartphones, the protection of these models, and validation of research ideas on these models.



قيم البحث

اقرأ أيضاً

We conduct to our knowledge a first measurement study of commercial 5G performance on smartphones by closely examining 5G networks of three carriers (two mmWave carriers, one mid-band carrier) in three U.S. cities. We conduct extensive field tests on 5G performance in diverse urban environments. We systematically analyze the handoff mechanisms in 5G and their impact on network performance. We explore the feasibility of using location and possibly other environmental information to predict the network performance. We also study the app performance (web browsing and HTTP download) over 5G. Our study consumes more than 15 TB of cellular data. Conducted when 5G just made its debut, it provides a baseline for studying how 5G performance evolves, and identifies key research directions on improving 5G users experience in a cross-layer manner. We have released the data collected from our study (referred to as 5Gophers) at https://fivegophers.umn.edu/www20.
The introduction of the generative adversarial imitation learning (GAIL) algorithm has spurred the development of scalable imitation learning approaches using deep neural networks. The GAIL objective can be thought of as 1) matching the expert policy s state distribution; 2) penalising the learned policys state distribution; and 3) maximising entropy. While theoretically motivated, in practice GAIL can be difficult to apply, not least due to the instabilities of adversarial training. In this paper, we take a pragmatic look at GAIL and related imitation learning algorithms. We implement and automatically tune a range of algorithms in a unified experimental setup, presenting a fair evaluation between the competing methods. From our results, our primary recommendation is to consider non-adversarial methods. Furthermore, we discuss the common components of imitation learning objectives, and present promising avenues for future research.
The worldwide spread of COVID-19 has prompted extensive online discussions, creating an `infodemic on social media platforms such as WhatsApp and Twitter. However, the information shared on these platforms is prone to be unreliable and/or misleading. In this paper, we present the first analysis of COVID-19 discourse on public WhatsApp groups from Pakistan. Building on a large scale annotation of thousands of messages containing text and images, we identify the main categories of discussion. We focus on COVID-19 messages and understand the different types of images/text messages being propagated. By exploring user behavior related to COVID messages, we inspect how misinformation is spread. Finally, by quantifying the flow of information across WhatsApp and Twitter, we show how information spreads across platforms and how WhatsApp acts as a source for much of the information shared on Twitter.
Digital contact tracing apps for COVID, such as the one developed by Google and Apple, need to estimate the risk that a user was infected during a particular exposure, in order to decide whether to notify the user to take precautions, such as enterin g into quarantine, or requesting a test. Such risk score models contain numerous parameters that must be set by the public health authority. In this paper, we show how to automatically learn these parameters from data. Our method needs access to exposure and outcome data. Although this data is already being collected (in an aggregated, privacy-preserving way) by several health authorities, in this paper we limit ourselves to simulated data, so that we can systematically study the different factors that affect the feasibility of the approach. In particular, we show that the parameters become harder to estimate when there is more missing data (e.g., due to infections which were not recorded by the app), and when there is model misspecification. Nevertheless, the learning approach outperforms a strong manually designed baseline. Furthermore, the learning approach can adapt even when the risk factors of the disease change, e.g., due to the evolution of new variants, or the adoption of vaccines.
We study how the behavior of deep policy gradient algorithms reflects the conceptual framework motivating their development. To this end, we propose a fine-grained analysis of state-of-the-art methods based on key elements of this framework: gradient estimation, value prediction, and optimization landscapes. Our results show that the behavior of deep policy gradient algorithms often deviates from what their motivating framework would predict: the surrogate objective does not match the true reward landscape, learned value estimators fail to fit the true value function, and gradient estimates poorly correlate with the true gradient. The mismatch between predicted and empirical behavior we uncover highlights our poor understanding of current methods, and indicates the need to move beyond current benchmark-centric evaluation methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا