ترغب بنشر مسار تعليمي؟ اضغط هنا

Paragraph-level Simplification of Medical Texts

140   0   0.0 ( 0 )
 نشر من قبل Ashwin Devaraj
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the problem of learning to simplify medical texts. This is important because most reliable, up-to-date information in biomedicine is dense with jargon and thus practically inaccessible to the lay audience. Furthermore, manual simplification does not scale to the rapidly growing body of biomedical literature, motivating the need for automated approaches. Unfortunately, there are no large-scale resources available for this task. In this work we introduce a new corpus of parallel texts in English comprising technical and lay summaries of all published evidence pertaining to different clinical topics. We then propose a new metric based on likelihood scores from a masked language model pretrained on scientific texts. We show that this automated measure better differentiates between technical and lay summaries than existing heuristics. We introduce and evaluate baseline encoder-decoder Transformer models for simplification and propose a novel augmentation to these in which we explicitly penalize the decoder for producing jargon terms; we find that this yields improvements over baselines in terms of readability.



قيم البحث

اقرأ أيضاً

This work presents Keep it Simple (KiS), a new approach to unsupervised text simplification which learns to balance a reward across three properties: fluency, salience and simplicity. We train the model with a novel algorithm to optimize the reward ( k-SCST), in which the model proposes several candidate simplifications, computes each candidates reward, and encourages candidates that outperform the mean reward. Finally, we propose a realistic text comprehension task as an evaluation method for text simplification. When tested on the English news domain, the KiS model outperforms strong supervised baselines by more than 4 SARI points, and can help people complete a comprehension task an average of 18% faster while retaining accuracy, when compared to the original text. Code available: https://github.com/tingofurro/keep_it_simple
Human understanding of narrative texts requires making commonsense inferences beyond what is stated explicitly in the text. A recent model, COMET, can generate such implicit commonsense inferences along several dimensions such as pre- and post-condit ions, motivations, and mental states of the participants. However, COMET was trained on commonsense inferences of short phrases, and is therefore discourse-agnostic. When presented with each sentence of a multi-sentence narrative, it might generate inferences that are inconsistent with the rest of the narrative. We present the task of discourse-aware commonsense inference. Given a sentence within a narrative, the goal is to generate commonsense inferences along predefined dimensions, while maintaining coherence with the rest of the narrative. Such large-scale paragraph-level annotation is hard to get and costly, so we use available sentence-level annotations to efficiently and automatically construct a distantly supervised corpus. Using this corpus, we train PARA-COMET, a discourse-aware model that incorporates paragraph-level information to generate coherent commonsense inferences from narratives. PARA-COMET captures both semantic knowledge pertaining to prior world knowledge, and episodic knowledge involving how current events relate to prior and future events in a narrative. Our results show that PARA-COMET outperforms the sentence-level baselines, particularly in generating inferences that are both coherent and novel.
163 - Xinya Du , Claire Cardie 2018
We study the task of generating from Wikipedia articles question-answer pairs that cover content beyond a single sentence. We propose a neural network approach that incorporates coreference knowledge via a novel gating mechanism. Compared to models t hat only take into account sentence-level information (Heilman and Smith, 2010; Du et al., 2017; Zhou et al., 2017), we find that the linguistic knowledge introduced by the coreference representation aids question generation significantly, producing models that outperform the current state-of-the-art. We apply our system (composed of an answer span extraction system and the passage-level QG system) to the 10,000 top-ranking Wikipedia articles and create a corpus of over one million question-answer pairs. We also provide a qualitative analysis for this large-scale generated corpus from Wikipedia.
Even for domain experts, it is a non-trivial task to verify a scientific claim by providing supporting or refuting evidence rationales. The situation worsens as misinformation is proliferated on social media or news websites, manually or programmatic ally, at every moment. As a result, an automatic fact-verification tool becomes crucial for combating the spread of misinformation. In this work, we propose a novel, paragraph-level, multi-task learning model for the SciFact task by directly computing a sequence of contextualized sentence embeddings from a BERT model and jointly training the model on rationale selection and stance prediction.
Word2vec (Mikolov et al., 2013) has proven to be successful in natural language processing by capturing the semantic relationships between different words. Built on top of single-word embeddings, paragraph vectors (Le and Mikolov, 2014) find fixed-le ngth representations for pieces of text with arbitrary lengths, such as documents, paragraphs, and sentences. In this work, we propose a novel interpretation for neural-network-based paragraph vectors by developing an unsupervised generative model whose maximum likelihood solution corresponds to traditional paragraph vectors. This probabilistic formulation allows us to go beyond point estimates of parameters and to perform Bayesian posterior inference. We find that the entropy of paragraph vectors decreases with the length of documents, and that information about posterior uncertainty improves performance in supervised learning tasks such as sentiment analysis and paraphrase detection.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا