ﻻ يوجد ملخص باللغة العربية
We study the task of generating from Wikipedia articles question-answer pairs that cover content beyond a single sentence. We propose a neural network approach that incorporates coreference knowledge via a novel gating mechanism. Compared to models that only take into account sentence-level information (Heilman and Smith, 2010; Du et al., 2017; Zhou et al., 2017), we find that the linguistic knowledge introduced by the coreference representation aids question generation significantly, producing models that outperform the current state-of-the-art. We apply our system (composed of an answer span extraction system and the passage-level QG system) to the 10,000 top-ranking Wikipedia articles and create a corpus of over one million question-answer pairs. We also provide a qualitative analysis for this large-scale generated corpus from Wikipedia.
We introduce ASQ, a tool to automatically mine questions and answers from a sentence using the Abstract Meaning Representation (AMR). Previous work has used question-answer pairs to specify the predicate-argument structure of a sentence using natural
Neural network-based methods represent the state-of-the-art in question generation from text. Existing work focuses on generating only questions from text without concerning itself with answer generation. Moreover, our analysis shows that handling ra
Large-scale question-answer (QA) pairs are critical for advancing research areas like machine reading comprehension and question answering. To construct QA pairs from documents requires determining how to ask a question and what is the corresponding
Motivated by suggested question generation in conversational news recommendation systems, we propose a model for generating question-answer pairs (QA pairs) with self-contained, summary-centric questions and length-constrained, article-summarizing an
We consider the problem of learning to simplify medical texts. This is important because most reliable, up-to-date information in biomedicine is dense with jargon and thus practically inaccessible to the lay audience. Furthermore, manual simplificati