ﻻ يوجد ملخص باللغة العربية
The center of our Galaxy is known to host a massive compact object, Sgr A$^*$, which is commonly considered as a super-massive black hole of $sim 4times 10^6$ M$_odot$. It is surrounded by a dense and massive nuclear star cluster, with a half mass radius about $5$~pc and a mass larger than $10^{7}$ M$_odot$. In this paper we studied the evolutionary fate of a very dense cluster of intermediate mass black holes, possible remnants of the dissipative orbital evolution of massive globular cluster hosts. We performed a set of high precision $N$-body simulations taking into account deviations from pure Newtonian gravitational interaction via a Post Newtonian development up to $2.5$ order, which is the one accounting for energy release by gravitational wave emission. The violent dynamics of the system leads to various successive merger events such to grow a single object containing $sim 25$ per cent of the total cluster mass before partial dispersal of the cluster, and such to generate, in different bursts, a significant quantity of gravitational waves emission. If generalized, the present results suggest a mechanism of mass growth up to the scale of a super massive black hole.
The spin angular momentum S of a supermassive black hole (SBH) precesses due to torques from orbiting stars, and the stellar orbits precess due to dragging of inertial frames by the spinning hole. We solve the coupled post-Newtonian equations describ
Chandrasekhars most important contribution to stellar dynamics was the concept of dynamical friction. I briefly review that work, then discuss some implications of Chandrasekhars theory of gravitational encounters for motion in galactic nuclei.
We calculate the exact formation probability of primordial black holes generated during the collapse at horizon re-entry of large fluctuations produced during inflation, such as those ascribed to a period of ultra-slow-roll. We show that it interpola
Primordial black hole (PBH) mergers have been proposed as an explanation for the gravitational wave events detected by the LIGO collaboration. Such PBHs may be formed in the early Universe as a result of the collapse of extremely rare high-sigma peak
We derive the first constraints on the time delay distribution of binary black hole (BBH) mergers using the LIGO-Virgo Gravitational-Wave Transient Catalog GWTC-2. Assuming that the progenitor formation rate follows the star formation rate (SFR), the