ترغب بنشر مسار تعليمي؟ اضغط هنا

The Formation Probability of Primordial Black Holes

91   0   0.0 ( 0 )
 نشر من قبل Matteo Biagetti
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We calculate the exact formation probability of primordial black holes generated during the collapse at horizon re-entry of large fluctuations produced during inflation, such as those ascribed to a period of ultra-slow-roll. We show that it interpolates between a Gaussian at small values of the average density contrast and a Cauchy probability distribution at large values. The corresponding abundance of primordial black holes may be larger than the Gaussian one by several orders of magnitude. The mass function is also shifted towards larger masses.



قيم البحث

اقرأ أيضاً

Primordial black holes might comprise a significant fraction of the dark matter in the Universe and be responsible for the gravitational wave signals from black hole mergers observed by the LIGO/Virgo collaboration. The spatial clustering of primordi al black holes might affect their merger rates and have a significant impact on the constraints on their masses and abundances. We provide some analytical treatment of the primordial black hole spatial clustering evolution, compare our results with some of the existing N-body numerical simulations and discuss the implications for the black hole merger rates. If primordial black holes contribute to a small fraction of the dark matter, primordial black hole clustering is not relevant. On the other hand, for a large contribution to the dark matter, we argue that the clustering may increase the late time Universe merger rate to a level compatible with the LIGO/Virgo detection rate. As for the early Universe merger rate of black hole binaries formed at primordial epochs, clustering alleviates the LIGO/Virgo constraints, but does not evade them.
We update the constraints on the fraction of the Universe that may have gone into primordial black holes (PBHs) over the mass range $10^{-5}text{--}10^{50}$ g. Those smaller than $sim 10^{15}$ g would have evaporated by now due to Hawking radiation, so their abundance at formation is constrained by the effects of evaporated particles on big bang nucleosynthesis, the cosmic microwave background (CMB), the Galactic and extragalactic $gamma$-ray and cosmic ray backgrounds and the possible generation of stable Planck mass relics. PBHs larger than $sim 10^{15}$ g are subject to a variety of constraints associated with gravitational lensing, dynamical effects, influence on large-scale structure, accretion and gravitational waves. We discuss the constraints on both the initial collapse fraction and the current fraction of the CDM in PBHs at each mass scale but stress that many of the constraints are associated with observational or theoretical uncertainties. We also consider indirect constraints associated with the amplitude of the primordial density fluctuations, such as second-order tensor perturbations and $mu$-distortions arising from the effect of acoustic reheating on the CMB, if PBHs are created from the high-$sigma$ peaks of nearly Gaussian fluctuations. Finally we discuss how the constraints are modified if the PBHs have an extended mass function, this being relevant if PBHs provide some combination of the dark matter, the LIGO/Virgo coalescences and the seeds for cosmic structure. Even if PBHs make a small contribution to the dark matter, they could play an important cosmological role and provide a unique probe of the early Universe.
We investigate Hawking evaporation of a population of primordial black holes (PBHs) prior to Big Bang Nucleosynthesis (BBN) as a mechanism to achieve asymmetric reheating of two sectors coupled solely by gravity. While the visible sector is reheated by the inflaton or a modulus, the dark sector is reheated by PBHs. Compared to inflationary or modular reheating of both sectors, there are two advantages: $(i)$ inflaton or moduli mediated operators that can subsequently thermalize the dark sector with the visible sector are not relevant to the asymmetric reheating process; $(ii)$ the mass and abundance of the PBHs provide parametric control of the thermal history of the dark sector, and in particular the ratio of the temperatures of the two sectors. Asymmetric reheating with PBHs turns out to have a particularly rich dark sector phenomenology, which we explore using a single self-interacting real scalar field in the dark sector as a template. Four thermal histories, involving non-relativistic and relativistic dark matter (DM) at chemical equilibrium, followed by the presence or absence of cannibalism, are explored. These histories are then constrained by the observed relic abundance in the current Universe and the Bullet Cluster. The case where PBHs dominate the energy density of the Universe, and reheat both the visible as well as the dark sectors, is also treated in detail.
Primordial Black Holes (PBHs) have entered the forefront of theoretical cosmology, due their potential role in phenomena ranging from gravitational waves, to dark matter, to galaxy formation. While producing PBHs from inflationary fluctuations naivel y would seem to require a large deceleration of the inflaton from its velocity at the horizon exit of CMB scales, in this work we demonstrate that an acceleration from a relatively small downward step in the potential that is transited in much less than an e-fold amplifies fluctuations as well. Depending on the location of the step, such PBHs could explain dark matter or the black holes detected by the gravitational wave interferometers. The perturbation enhancement has a natural interpretation as particle production due to the non-adiabatic transition associated with the step.
We show that the number of primordial black holes (PBHs) which is originated from primordial density perturbations with moderately-tilted power spectrum fluctuates following the log-normal distribution, while it follows the Poisson distribution if th e spectrum is steeply blue. The log-normal, as well as the Poisson, fluctuation of the PBH number behaves as an isocurvature mode and affects the matter power spectrum and the halo mass function in a different way from those for the Poisson case. The future 21cm observation can potentially put a stronger constraint on the PBH fraction than the current one in a wide mass range, $10^{-5}M_odot$--$10M_odot$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا