ﻻ يوجد ملخص باللغة العربية
In this paper, a decomposition theorem for (covariant) unitary group representations on Kaplansky-Hilbert modules over Stone algebras is established, which generalizes the well-known Hilbert space case (where it coincides with the decomposition of Jacobs, de Leeuw and Glicksberg). The proof rests heavily on the operator theory on Kaplansky-Hilbert modules, in particular the spectral theorem for Hilbert-Schmidt homomorphisms on such modules. As an application, a generalization of the celebrated Furstenberg-Zimmer structure theorem to the case of measure-preserving actions of arbitrary groups on arbitrary probability spaces is established.
The Nevo-Zimmer theorem classifies the possible intermediate $G$-factors $Y$ in $X times G/P to Y to X$, where $G$ is a higher rank semisimple Lie group, $P$ a minimal parabolic and $X$ an irreducible $G$-space with an invariant probability measure.
The existence of a homogeneous decomposition for continuous and epi-translation invariant valuations on super-coercive functions is established. Continuous and epi-translation invariant valuations that are epi-homogeneous of degree $n$ are classified
The quaternionic spectral theorem has already been considered in the literature, see e.g. [22], [31], [32], however, except for the finite dimensional case in which the notion of spectrum is associated to an eigenvalue problem, see [21], it is not sp
The Furstenberg-Sarkozy theorem asserts that the difference set $E-E$ of a subset $E subset mathbb{N}$ with positive upper density intersects the image set of any polynomial $P in mathbb{Z}[n]$ for which $P(0)=0$. Furstenbergs approach relies on a co
A long standing problem, which has its roots in low-dimensional homotopy theory, is to classify all finite groups $G$ for which the integral group ring $mathbb{Z}G$ has stably free cancellation (SFC). We extend results of R. G. Swan by giving a condi