ترغب بنشر مسار تعليمي؟ اضغط هنا

The Nevo-Zimmer intermediate factor theorem over local fields

116   0   0.0 ( 0 )
 نشر من قبل Arie Levit
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English
 تأليف Arie Levit




اسأل ChatGPT حول البحث

The Nevo-Zimmer theorem classifies the possible intermediate $G$-factors $Y$ in $X times G/P to Y to X$, where $G$ is a higher rank semisimple Lie group, $P$ a minimal parabolic and $X$ an irreducible $G$-space with an invariant probability measure. An important corollary is the Stuck-Zimmer theorem, which states that a faithful irreducible action of a higher rank Kazhdan semisimple Lie group with an invariant probability measure is either transitive or free, up to a null set. We present a different proof of the first theorem, that allows us to extend these two well-known theorems to linear groups over arbitrary local fields.



قيم البحث

اقرأ أيضاً

In this paper, a decomposition theorem for (covariant) unitary group representations on Kaplansky-Hilbert modules over Stone algebras is established, which generalizes the well-known Hilbert space case (where it coincides with the decomposition of Ja cobs, de Leeuw and Glicksberg). The proof rests heavily on the operator theory on Kaplansky-Hilbert modules, in particular the spectral theorem for Hilbert-Schmidt homomorphisms on such modules. As an application, a generalization of the celebrated Furstenberg-Zimmer structure theorem to the case of measure-preserving actions of arbitrary groups on arbitrary probability spaces is established.
An important problem in the theory of finite dynamical systems is to link the structure of a system with its dynamics. This paper contains such a link for a family of nonlinear systems over an arbitrary finite field. For systems that can be described by monomials, one can obtain information about the limit cycle structure from the structure of the monomials. In particular, the paper contains a sufficient condition for a monomial system to have only fixed points as limit cycles. The condition is derived by reducing the problem to the study of a Boolean monomial system and a linear system over a finite ring.
123 - Helge Glockner 2007
Let G be a Lie group over a local field of positive characteristic which admits a contractive automorphism f (i.e., the forward iterates f^n(x) of each group element x converge to the neutral element 1). We show that then G is a torsion group of fini te exponent and nilpotent. We also obtain results concerning the interplay between contractive automorphisms of Lie groups over local fields, contractive automorphisms of their Lie algebras, and positive gradations thereon. Some of the results even extend to Lie groups over arbitrary complete ultrametric fields.
If the $ell$-adic cohomology of a projective smooth variety, defined over a local field $K$ with finite residue field $k$, is supported in codimension $ge 1$, then every model over the ring of integers of $K$ has a $k$-rational point. For $K$ a $p$-a dic field, this is math/0405318, Theorem 1.1. If the model $sX$ is regular, one has a congruence $|sX(k)|equiv 1 $ modulo $|k|$ for the number of $k$-rational points 0704.1273, Theorem 1.1. The congruence is violated if one drops the regularity assumption.
147 - Helge Glockner 2008
We give an exposition of the theory of invariant manifolds around a fixed point, in the case of time-discrete, analytic dynamical systems over a complete ultrametric field K. Typically, we consider an analytic manifold M modelled on an ultrametric Banach space over K, an analytic self-map f of M, and a fixed point p of f. Under suitable conditions on the tangent map of f at p, we construct a centre-stable manifold, a centre manifold, respectively, an r-stable manifold around p, for a given positive real number r not exceeding 1. The invariant manifolds are useful in the theory of Lie groups over local fields, where they allow results to be extended to the case of positive characteristic which previously were only available in characteristic zero (i.e., for p-adic Lie groups).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا