ترغب بنشر مسار تعليمي؟ اضغط هنا

Keck Cosmic Web Imager Observations of He II Emission in I Zw 18

85   0   0.0 ( 0 )
 نشر من قبل Ryan Rickards Vaught
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

With a metallicity of 12 + Log(O/H) $approx$ 7.1-7.2, I Zw 18 is a canonical low-metallicity blue compact dwarf (BCD) galaxy. A growing number of BCDs, including I Zw 18, have been found to host strong, narrow-lined, nebular He II ($lambda$4686) emission with enhanced intensities compared to H$beta$ (e.g., He II($lambda$4686)/H$beta$ > 1%). We present new observations of I Zw 18 using the Keck Cosmic Web Imager. These observations reveal two nebular He II emission regions (or He III regions) northwest and southeast of the He III region in the galaxys main body investigated in previous studies. All regions exhibit He II($lambda4686$)/Hbeta greater than 2%. The two newly resolved He III regions lie along an axis that intercepts the position of I Zw 18s ultraluminous X-ray (ULX) source. We explore whether the ULX could power the two He III regions via shock activity and/or beamed X-ray emission. We find no evidence of shocks from the gas kinematics. If the ULX powers the two regions, the X-ray emission would need to be beamed. Another potential explanation is that a class of early-type nitrogen-rich Wolf-Rayet stars with low winds could power the two He III regions, in which case the alignment with the ULX would be coincidental.



قيم البحث

اقرأ أيضاً

We report on the design and performance of the Keck Cosmic Web Imager (KCWI), a general purpose optical integral field spectrograph that has been installed at the Nasmyth port of the 10 m Keck II telescope on Mauna Kea, HI. The novel design provides blue-optimized seeing-limited imaging from 350-560 nm with configurable spectral resolution from 1000 - 20000 in a field of view up to 20x33. Selectable volume phase holographic (VPH) gratings and high performance dielectric, multilayer silver and enhanced aluminum coatings provide end-to-end peak efficiency in excess of 45% while accommodating the future addition of a red channel that will extend wavelength coverage to 1 micron. KCWI takes full advantage of the excellent seeing and dark sky above Mauna Kea with an available nod-and-shuffle observing mode. The instrument is optimized for observations of faint, diffuse objects such as the intergalactic medium or cosmic web. In this paper, a detailed description of the instrument design is provided with measured performance results from the laboratory test program and ten nights of on-sky commissioning during the spring of 2017. The KCWI team is lead by Caltech and JPL (project management, design and implementation) in partnership with the University of California at Santa Cruz (camera optical and mechanical design) and the W. M. Keck Observatory (observatory interfaces).
Ultraviolet and 21-cm observations suggest that the extremely low-metallicity galaxy, I Zw 18, is a stream-fed galaxy containing a pocket of pristine stars responsible for producing nebular He II recombination emission observed in I Zw18-NW. Far-UV s pectra by Hubble/COS and the Far Ultraviolet Spectroscopic Explorer (FUSE) make this suggestion conclusive by demonstrating that the spectrum of I Zw 18-NW shows no metal lines like O VI 1032, 1038 of comparable ionization as the He II recombination emission.
Using the Keck Cosmic Web Imager we obtain spectra of several globular clusters (GCs), ultra compact dwarfs (UCDs) and the inner halo starlight of M87, at a similar projected galactocentric radius of $sim$5 kpc. This enables us, for the first time, t o apply the same stellar population analysis to the GCs, UCDs and starlight consistently to derive ages, metallicities and alpha-element abundances in M87. We find evidence for a dual stellar population in the M87 halo light, i.e an $sim$80% component by mass which is old and metal-rich and a $sim$20% component which is old but metal-poor. Two red GCs share similar stellar populations to the halo light suggesting they may have formed contemporaneously with the dominant halo component. Three UCDs, and one blue GC, have similar stellar populations, with younger mean ages, lower metallicities and near solar alpha-element abundances. Combined with literature data, our findings are consistent with the scenario that UCDs are the remnant nucleus of a stripped galaxy. We further investigate the discrepancy in the literature for M87s kinematics at large radii, favouring a declining velocity dispersion profile. This work has highlighted the need for more self-consistent studies of galaxy halos.
Dark-matter-only simulations predict that dark matter halos have cusp-like inner density profiles, while observations of low-mass galaxies have found a range of inner slopes that are typically much shallower. It is still not well established whether this discrepancy can be explained by baryonic feedback or if it may require modified dark matter models. To better understand the diversity of dark matter profiles in dwarf galaxies, we undertook a survey of 26 low-mass galaxies ($log M_*/textrm{M}_odot = 8.4-9.8$, $v_{rm max} = 50-140$ km s$^{-1}$) within 30 Mpc using the Palomar Cosmic Web Imager, which is among the largest integral field spectroscopic surveys of its type. In this paper, we derive H$alpha$ velocity fields for the full sample with a typical spatial resolution of $sim$160 pc. We extract rotation curves and verify their robustness to several choices in the analysis. We present a method for improving the velocity precision obtained from image slicing spectrographs using narrowband H$alpha$ images. For 11 galaxies, we compare the H$alpha$ velocity fields to CO kinematics measured using CARMA, finding the maps to be in good agreement. The standard deviation of the difference is typically $sim$7 km s$^{-1}$, comparable to the level of turbulence in the interstellar medium, showing that the two tracers have substantially the same bulk kinematics. In a companion paper, we will use the rotation curves produced here to construct mass models of the galaxies and determine their dark matter density profiles.
We present spatially-resolved two-dimensional maps and radial trends of the stellar populations and kinematics for a sample of six compact elliptical galaxies (cE) using spectroscopy from the Keck Cosmic Web Imager (KCWI). We recover their star forma tion histories, finding that all except one of our cEs are old and metal rich, with both age and metallicity decreasing toward their outer radii. We also use the integrated values within one effective radius to study different scaling relations. Comparing our cEs with others from the literature and from simulations we reveal the formation channel that these galaxies might have followed. All our cEs are fast rotators, with relatively high rotation values given their low ellipticites. In general, the properties of our cEs are very similar to those seen in the cores of more massive galaxies, and in particular, to massive compact galaxies. Five out of our six cEs are the result of stripping a more massive (compact or extended) galaxy, and only one cE is compatible with having been formed intrinsically as the low-mass, compact object that we see today. These results further confirm that cEs are a mixed-bag of galaxies that can be formed following different formation channels, reporting for the first time an evolutionary link within the realm of compact galaxies (at all stellar masses).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا