ترغب بنشر مسار تعليمي؟ اضغط هنا

The Dark Matter Distributions in Low-Mass Disk Galaxies. I. H$alpha$ Observations Using the Palomar Cosmic Web Imager

174   0   0.0 ( 0 )
 نشر من قبل Nicole Relatores
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dark-matter-only simulations predict that dark matter halos have cusp-like inner density profiles, while observations of low-mass galaxies have found a range of inner slopes that are typically much shallower. It is still not well established whether this discrepancy can be explained by baryonic feedback or if it may require modified dark matter models. To better understand the diversity of dark matter profiles in dwarf galaxies, we undertook a survey of 26 low-mass galaxies ($log M_*/textrm{M}_odot = 8.4-9.8$, $v_{rm max} = 50-140$ km s$^{-1}$) within 30 Mpc using the Palomar Cosmic Web Imager, which is among the largest integral field spectroscopic surveys of its type. In this paper, we derive H$alpha$ velocity fields for the full sample with a typical spatial resolution of $sim$160 pc. We extract rotation curves and verify their robustness to several choices in the analysis. We present a method for improving the velocity precision obtained from image slicing spectrographs using narrowband H$alpha$ images. For 11 galaxies, we compare the H$alpha$ velocity fields to CO kinematics measured using CARMA, finding the maps to be in good agreement. The standard deviation of the difference is typically $sim$7 km s$^{-1}$, comparable to the level of turbulence in the interstellar medium, showing that the two tracers have substantially the same bulk kinematics. In a companion paper, we will use the rotation curves produced here to construct mass models of the galaxies and determine their dark matter density profiles.



قيم البحث

اقرأ أيضاً

Dark matter-only simulations predict that dark matter halos have steep, cuspy inner density profiles, while observations of dwarf galaxies find a range of inner slopes that are often much shallower. There is debate whether this discrepancy can be exp lained by baryonic feedback or if it may require modified dark matter models. In Paper 1 of this series, we obtained high-resolution integral field H$alpha$ observations for 26 dwarf galaxies with $M_*=10^{8.1}-10^{9.7}textrm{M}_odot$. We derived rotation curves from our observations, which we use here to construct mass models. We model the total mass distribution as the sum of a generalized Navarro-Frenk-White (NFW) dark matter halo and the stellar and gaseous components. Our analysis of the slope of the dark matter density profile focuses on the inner 300-800 pc, chosen based on the resolution of our data and the region resolved by modern hydrodynamical simulations. The inner slope measured using ionized and molecular gas tracers is consistent, and it is additionally robust to the choice of stellar mass-to-light ratio. We find a range of dark matter profiles, including both cored and cuspy slopes, with an average of $rho_{rm DM}sim r^{-0.74pm 0.07}$, shallower than the NFW profile, but steeper than those typically observed for lower-mass galaxies with $M_*sim 10^{7.5}textrm{M}_odot$. Simulations that reproduce the observed slopes in those lower-mass galaxies also produce slopes that are too shallow for galaxies in our mass range. We therefore conclude that supernova feedback models do not yet provide a fully satisfactory explanation for the observed trend in dark matter slopes.
We present spatially-resolved two-dimensional maps and radial trends of the stellar populations and kinematics for a sample of six compact elliptical galaxies (cE) using spectroscopy from the Keck Cosmic Web Imager (KCWI). We recover their star forma tion histories, finding that all except one of our cEs are old and metal rich, with both age and metallicity decreasing toward their outer radii. We also use the integrated values within one effective radius to study different scaling relations. Comparing our cEs with others from the literature and from simulations we reveal the formation channel that these galaxies might have followed. All our cEs are fast rotators, with relatively high rotation values given their low ellipticites. In general, the properties of our cEs are very similar to those seen in the cores of more massive galaxies, and in particular, to massive compact galaxies. Five out of our six cEs are the result of stripping a more massive (compact or extended) galaxy, and only one cE is compatible with having been formed intrinsically as the low-mass, compact object that we see today. These results further confirm that cEs are a mixed-bag of galaxies that can be formed following different formation channels, reporting for the first time an evolutionary link within the realm of compact galaxies (at all stellar masses).
With a metallicity of 12 + Log(O/H) $approx$ 7.1-7.2, I Zw 18 is a canonical low-metallicity blue compact dwarf (BCD) galaxy. A growing number of BCDs, including I Zw 18, have been found to host strong, narrow-lined, nebular He II ($lambda$4686) emis sion with enhanced intensities compared to H$beta$ (e.g., He II($lambda$4686)/H$beta$ > 1%). We present new observations of I Zw 18 using the Keck Cosmic Web Imager. These observations reveal two nebular He II emission regions (or He III regions) northwest and southeast of the He III region in the galaxys main body investigated in previous studies. All regions exhibit He II($lambda4686$)/Hbeta greater than 2%. The two newly resolved He III regions lie along an axis that intercepts the position of I Zw 18s ultraluminous X-ray (ULX) source. We explore whether the ULX could power the two He III regions via shock activity and/or beamed X-ray emission. We find no evidence of shocks from the gas kinematics. If the ULX powers the two regions, the X-ray emission would need to be beamed. Another potential explanation is that a class of early-type nitrogen-rich Wolf-Rayet stars with low winds could power the two He III regions, in which case the alignment with the ULX would be coincidental.
136 - J. Blue Bird , J. Davis , N. Luber 2019
We present neutral hydrogen (HI) and ionized hydrogen (H${alpha}$) observations of ten galaxies out to a redshift of 0.1. The HI observations are from the first epoch (178 hours) of the COSMOS HI Large Extragalactic Survey (CHILES). Our sample is HI biased and consists of ten late-type galaxies with HI masses that range from $1.8times10^{7}$ M$_{odot}$ to $1.1times10^{10}$ M$_{odot}$. We find that although the majority of galaxies show irregularities in the morphology and kinematics, they generally follow the scaling relations found in larger samples. We find that the HI and H${alpha}$ velocities reach the flat part of the rotation curve. We identify the large-scale structure in the nearby CHILES volume using DisPerSE with the spectroscopic catalog from SDSS. We explore the gaseous properties of the galaxies as a function of location in the cosmic web. We also compare the angular momentum vector (spin) of the galaxies to the orientation of the nearest cosmic web filament. Our results show that galaxy spins tend to be aligned with cosmic web filaments and show a hint of a transition mass associated with the spin angle alignment.
Mapping the intergalactic medium (IGM) in Lyman-$alpha$ emission would yield unprecedented tomographic information on the large-scale distribution of baryons and potentially provide new constraints on the UV background and various feedback processes relevant to galaxy formation. Here, we use a cosmological hydrodynamical simulation to examine the Lyman-$alpha$ emission of the IGM due to collisional excitations and recombinations in the presence of a UV background. We focus on gas in large-scale-structure filaments in which Lyman-$alpha$ radiative transfer effects are expected to be moderate. At low density the emission is primarily due to fluorescent re-emission of the ionising UV background due to recombinations, while collisional excitations dominate at higher densities. We discuss prospects of current and future observational facilities to detect this emission and find that the emission of filaments of the cosmic web will typically be dominated by the halos and galaxies embedded in them, rather than by the lower density filament gas outside halos. Detecting filament gas directly would require a very long exposure with a MUSE-like instrument on the ELT. Our most robust predictions that act as lower limits indicate this would be slightly less challenging at lower redshifts ($z lesssim 4$). We also find that there is a large amount of variance between fields in our mock observations. High-redshift protoclusters appear to be the most promising environment to observe the filamentary IGM in Lyman-$alpha$ emission.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا