ﻻ يوجد ملخص باللغة العربية
Based on a general transport theory for non-reciprocal non-Hermitian systems and a topological model that encompasses a wide range of previously studied models, we (i) provide conditions for effects such as reflectionless and transparent transport, lasing, and coherent perfect absorption, (ii) identify which effects are compatible and linked with each other, and (iii) determine by which levers they can be tuned independently. For instance, the directed amplification inherent in the non-Hermitian skin effect does not enter the spectral conditions for reflectionless transport, lasing, or coherent perfect absorption, but allows to adjust the transparency of the system. In addition, in the topological model the conditions for reflectionless transport depend on the topological phase, but those for coherent perfect absorption do not. This then allows us to establish a number of distinct transport signatures of non-Hermitian, nonreciprocal, and topological behaviour, in particular (I) reflectionless transport in a direction that depends on the topological phase, (II) invisibility coinciding with the skin-effect phase transition of topological edge states, and (III) coherent perfect absorption in a system that is transparent when probed from one side.
We study the geometric response of three-dimensional non-Hermitian crystalline systems with nontrivial point-gap topology. For systems with fourfold rotation symmetry, we show that in the presence of disclination lines with a total Frank angle which
Non-Hermiticity from non-reciprocal hoppings has been shown recently to demonstrate the non-Hermitian skin effect (NHSE) under open boundary conditions (OBCs). Here we study the interplay of this effect and the Anderson localization in a textit{non-r
Berry phases strongly affect the properties of crystalline materials, giving rise to modifications of the semiclassical equations of motion that govern wave-packet dynamics. In non-Hermitian systems, generalizations of the Berry connection have been
The usual concepts of topological physics, such as the Berry curvature, cannot be applied directly to non-Hermitian systems. We show that another object, the quantum metric, which often plays a secondary role in Hermitian systems, becomes a crucial q
Non-Hermitian skin effect exhibits the collapse of the extended bulk modes into the extensive number of localized boundary states in open boundary conditions. Here we demonstrate the disorder-driven phase transition of the trivial non-Hermitian syste