ترغب بنشر مسار تعليمي؟ اضغط هنا

VR Hackathon with Goethe Institute: Lessons Learned from Organizing a Transdisciplinary VR Hackathon

83   0   0.0 ( 0 )
 نشر من قبل Wieslaw Kopec
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this article we report a case study of a Language Learning Bauhaus VR hackathon with Goethe Institute. It was organized as an educational and research project to tap into the dynamics of transdisciplinary teams challenged with a specific requirement. In our case, it was to build a Bauhaus-themed German Language Learning VR App. We constructed this experiment to simulate how representatives of different disciplines may work together towards a very specific purpose under time pressure. So, each participating team consisted of members of various expert-fields: software development (Unity or Unreal), design, psychology and linguistics. The results of this study cast light on the recommended cycle of design thinking and customer-centered design in VR. Especially in interdisciplinary rapid prototyping conditions, where stakeholders initially do not share competences. They also showcase educational benefits of working in transdisciplinary environments. This study, combined with our previous work on human factors in rapid software development and co-design, including hackathon dynamics, allowed us to formulate recommendations for organizing content creation VR hackathons for specific purposes. We also provide guidelines on how to prepare the participants to work in rapid prototyping VR environments and benefit from such experiences in the long term.



قيم البحث

اقرأ أيضاً

The rapid development of virtual reality technology has increased its availability and, consequently, increased the number of its possible applications. The interest in the new medium has grown due to the entertainment industry (games, VR experiences and movies). The number of freely available training and therapeutic applications is also increasing. Contrary to popular opinion, new technologies are also adopted by older adults. Creating virtual environments tailored to the needs and capabilities of older adults requires intense research on the behaviour of these participants in the most common situations, towards commonly used elements of the virtual environment, in typical sceneries. Comfortable immersion in a virtual environment is key to achieving the impression of presence. Presence is, in turn, necessary to obtain appropriate training, persuasive and therapeutic effects. A virtual agent (a humanoid representation of an algorithm or artificial intelligence) is often an element of the virtual environment interface. Maintaining an appropriate distance to the agent is, therefore, a key parameter for the creator of the VR experience. Older (65+) participants maintain greater distance towards an agent (a young white male) than younger ones (25-35). It may be caused by differences in the level of arousal, but also cultural norms. As a consequence, VR developers are advised to use algorithms that maintain the agent at the appropriate distance, depending on the users age.
In this paper we report on a study conducted with a group of older adults in which they engaged in participatory design workshops to create a VR ATM training simulation. Based on observation, recordings and the developed VR application we present the results of the workshops and offer considerations and recommendations for organizing opportunities for end users, in this case older adults, to directly engage in co-creation of cutting-edge ICT solutions. These include co-designing interfaces and interaction schemes for emerging technologies like VR and AR. We discuss such aspects as user engagement and hardware and software tools suitable for participatory prototyping of VR applications. Finally, we present ideas for further research in the area of VR participatory prototyping with users of various proficiency levels, taking steps towards developing a unified framework for co-design in AR and VR.
Virtual reality (VR) is rapidly growing, with the potential to change the way we create and consume content. In VR, users integrate multimodal sensory information they receive, to create a unified perception of the virtual world. In this survey, we r eview the body of work addressing multimodality in VR, and its role and benefits in user experience, together with different applications that leverage multimodality in many disciplines. These works thus encompass several fields of research, and demonstrate that multimodality plays a fundamental role in VR; enhancing the experience, improving overall performance, and yielding unprecedented abilities in skill and knowledge transfer.
With the continuing development of affordable immersive virtual reality (VR) systems, there is now a growing market for consumer content. The current form of consumer systems is not dissimilar to the lab-based VR systems of the past 30 years: the pri mary input mechanism is a head-tracked display and one or two tracked hands with buttons and joysticks on hand-held controllers. Over those 30 years, a very diverse academic literature has emerged that covers design and ergonomics of 3D user interfaces (3DUIs). However, the growing consumer market has engaged a very broad range of creatives that have built a very diverse set of designs. Sometimes these designs adopt findings from the academic literature, but other times they experiment with completely novel or counter-intuitive mechanisms. In this paper and its online adjunct, we report on novel 3DUI design patterns that are interesting from both design and research perspectives: they are highly novel, potentially broadly re-usable and/or suggest interesting avenues for evaluation. The supplemental material, which is a living document, is a crowd-sourced repository of interesting patterns. This paper is a curated snapshot of those patterns that were considered to be the most fruitful for further elaboration.
In this work, we present MAGES 3.0, a novel Virtual Reality (VR)-based authoring SDK platform for accelerated surgical training and assessment. The MAGES Software Development Kit (SDK) allows code-free prototyping of any VR psychomotor simulation of medical operations by medical professionals, who urgently need a tool to solve the issue of outdated medical training. Our platform encapsulates the following novel algorithmic techniques: a) collaborative networking layer with Geometric Algebra (GA) interpolation engine b) supervised machine learning analytics module for real-time recommendations and user profiling c) GA deformable cutting and tearing algorithm d) on-the-go configurable soft body simulation for deformable surfaces.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا