ﻻ يوجد ملخص باللغة العربية
In this work, we present MAGES 3.0, a novel Virtual Reality (VR)-based authoring SDK platform for accelerated surgical training and assessment. The MAGES Software Development Kit (SDK) allows code-free prototyping of any VR psychomotor simulation of medical operations by medical professionals, who urgently need a tool to solve the issue of outdated medical training. Our platform encapsulates the following novel algorithmic techniques: a) collaborative networking layer with Geometric Algebra (GA) interpolation engine b) supervised machine learning analytics module for real-time recommendations and user profiling c) GA deformable cutting and tearing algorithm d) on-the-go configurable soft body simulation for deformable surfaces.
In this article we report a case study of a Language Learning Bauhaus VR hackathon with Goethe Institute. It was organized as an educational and research project to tap into the dynamics of transdisciplinary teams challenged with a specific requireme
Virtual reality (VR) is rapidly growing, with the potential to change the way we create and consume content. In VR, users integrate multimodal sensory information they receive, to create a unified perception of the virtual world. In this survey, we r
Size and distance perception in Virtual Reality (VR) have been widely studied, albeit in a controlled laboratory setting with a small number of participants. We describe a fully remote perceptual study with a gamified protocol to encourage participan
With the advancements in social robotics and virtual avatars, it becomes increasingly important that these agents adapt their behavior to the mood, feelings and personality of their users. One such aspect of the user is empathy. Whereas many studies
The rapid development of virtual reality technology has increased its availability and, consequently, increased the number of its possible applications. The interest in the new medium has grown due to the entertainment industry (games, VR experiences