ﻻ يوجد ملخص باللغة العربية
Decentralized vehicle-to-everything (V2X) networks (i.e., Mode-4 C-V2X and Mode 2a NR-V2X), rely on periodic Basic Safety Messages (BSMs) to disseminate time-sensitive information (e.g., vehicle position) and has the potential to improve on-road safety. For BSM scheduling, decentralized V2X networks utilize sensing-based semi-persistent scheduling (SPS), where vehicles sense radio resources and select suitable resources for BSM transmissions at prespecified periodic intervals termed as Resource Reservation Interval (RRI). In this paper, we show that such a BSM scheduling (with a fixed RRI) suffers from severe under- and over- utilization of radio resources under varying vehicle traffic scenarios; which severely compromises timely dissemination of BSMs, which in turn leads to increased collision risks. To address this, we extend SPS to accommodate an adaptive RRI, termed as SPS++. Specifically, SPS++ allows each vehicle -- (i) to dynamically adjust RRI based on the channel resource availability (by accounting for various vehicle traffic scenarios), and then, (ii) select suitable transmission opportunities for timely BSM transmissions at the chosen RRI. Our experiments based on Mode-4 C-V2X standard implemented using the ns-3 simulator show that SPS++ outperforms SPS by at least $50%$ in terms of improved on-road safety performance, in all considered simulation scenarios.
Cellular Vehicle-to-Everything (C-V2X) networks can operate without cellular infrastructure support. Vehicles can autonomously select their radio resources using the sensing-based Semi-Persistent Scheduling (SPS) algorithm specified by the Third Gene
Various legacy and emerging industrial control applications create the requirement of periodic and time-sensitive communication (TSC) for 5G/6G networks. State-of-the-art semi-persistent scheduling (SPS) techniques fall short of meeting the requireme
Thanks to rapid technological advances in the Internet of Things (IoT), a smart public safety (SPS) system has become feasible by integrating heterogeneous computing devices to collaboratively provide public protection services. While a service orien
Federated edge learning (FEEL) has emerged as an effective alternative to reduce the large communication latency in Cloud-based machine learning solutions, while preserving data privacy. Unfortunately, the learning performance of FEEL may be compromi
With the increasing adoption of intelligent transportation systems and the upcoming era of autonomous vehicles, vehicular services (such as, remote driving, cooperative awareness, and hazard warning) will face an ever changing and dynamic environment