ﻻ يوجد ملخص باللغة العربية
Propagation of a tightly focused high-power ultrashort laser pulse in an optical medium is usually substantially influenced by the medium optical nonlinearity that can noticeably affect the laser pulse parameters around the nonlinear focus and lead to unavoidable and often undesirable spatial distortions of the focal waist. We present the results of our experimental study and numerical simulations on a femtosecond Ti-Sapphire laser pulse propagation in air under different spatial focusing. We concentrated our study on spectral-angular and spatial pulse transformations under different focusing regimes, from linear to nonlinear one, when pulse filamentation occurs. For the first time to the best of our knowledge, we found the laser pulse numerical apertures range,namely, from NA=0.002 to 0.005 (for laser pulse energy of 1 mJ), where the laser pulse distortions both in frequency-angular spectrum and pulse spatial shape are minimal. By means of the numerical simulations, we found the threshold pulse energy and peak power in a wide range of focusing conditions, within which a transition between the linear and strongly nonlinear laser pulse focusing in air takes place. This energy limit is shown to decrease with pulse numerical aperture enhancement. Our findings identify the laser pulse numerical apertures and energy adequate for getting a maximum laser intensity with a good beam quality around the focal point suitable for various laser micropatterning and micromachining technologies.
We investigate the generation of broadband terahertz (THz) pulses with phase singularity from air plasmas created by fundamental and second harmonic laser pulses. We show that when the second harmonic beam carries a vortex charge, the THz beam acquir
The propagation of intense picosecond laser pulses in air in the presence of strong nonlinear self-action effects and air ionization is investigated experimentally and numerically. The model used for numerical analysis is based on the nonlinear propa
We experimentally demonstrate energy exchange between a delay-tuned femtosecond beam and two delay-fixed ones as they spatiotemporally overlapped and experienced filamentation in air. The energy exchange process in the relative time delay is dramatic
We experimentally investigated the rotationally resolved polarization characteristics of N$_2^+$ lasing at 391 and 428 nm using a pump-seed scheme. By varying the relative angle between the linear polarizations of the pump and seed, it is found that
Two dimensional particle-in-cell simulations characterizing the interaction of ultraintense short pulse lasers in the range 10^{18} leq I leq 10^{20} W/cm^{2} with converging target geometries are presented. Seeking to examine intensity amplification