ترغب بنشر مسار تعليمي؟ اضغط هنا

Terahertz vortex wave generation in air plasma by two-color femtosecond laser pulses

133   0   0.0 ( 0 )
 نشر من قبل Stefan Skupin
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the generation of broadband terahertz (THz) pulses with phase singularity from air plasmas created by fundamental and second harmonic laser pulses. We show that when the second harmonic beam carries a vortex charge, the THz beam acquires a vortex structure as well. A generic feature of such THz vortex is that the intensity is modulated along the azimuthal angle, which can be attributed to the spatially varying relative phase difference between the two pump harmonics. Fully space and time resolved numerical simulations reveal that transverse instabilities of the pump further affect the emitted THz field along nonlinear propagation, which produces additional singularities resulting in a rich vortex structure. The predicted intensity modulation is experimentally demonstrated with a thermal camera, in excellent agreement with simulation results. The presence of phase singularities in the experiment is revealed by astigmatic transformation of the beam using a cylindrical mirror.



قيم البحث

اقرأ أيضاً

A new regime in the interaction of a two-colour ($omega$,$2omega$) laser with a nanometre-scale foil is identified, resulting in the emission of extremely intense, isolated attosecond pulses - even in the case of multi-cycle lasers. For foils irradia ted by lasers exceeding the blow-out field strength (i.e. capable of fully separating electrons from the ion background), the addition of a second harmonic field results in the stabilization of the foil up to the blow-out intensity. This is then followed by a sharp transition to transparency that essentially occurs in a single optical cycle. During the transition cycle, a dense, nanometre-scale electron bunch is accelerated to relativistic velocities and emits a single, strong attosecond pulse with a peak intensity approaching that of the laser field.
We show experimentally that the terahertz (THz) emission of a plasma, generated in air by a two-color laser pulse (containing a near IR frequency and its second harmonic), can be enhanced by the addition of an 800-nm pulse. We observed enhancements o f the THz electric field by a factor of up to 30. This provides a widely accessible means for researchers using optical parametric amplifiers (OPA) to increase their THz yields by simply adding the residual pump beam of the OPA to the plasma generating beam. We investigate the dependence of the THz electric field enhancement factor on the powers of the two-color beam as well as the 800-nm enhancement beam. Numerical calculations using the well-known photocurrent model are in excellent agreement with the experimental observations.
84 - Longqing Yi , Tunde Fulop 2019
We propose a method to generate isolated relativistic terahertz (THz) pulses using a high-power laser irradiating a mirco-plasma-waveguide (MPW). When the laser pulse enters the MPW, high-charge electron bunches are produced and accelerated to ~ 100 MeV by the transverse magnetic modes. A substantial part of the electron energy is transferred to THz emission through coherent diffraction radiation as the electron bunches exit the MPW. We demonstrate this process with three-dimensional particle-in-cell simulations. The frequency of the radiation is determined by the incident laser duration, and the radiated energy is found to be strongly correlated to the charge of the electron bunches, which can be controlled by the laser intensity and micro-engineering of the MPW target. Our simulations indicate that 100-mJ level relativistic-intense THz pulses with tunable frequency can be generated at existing laser facilities, and the overall efficiency reaches 1%.
The spectrum of terahertz (THz) emission in gases via ionizing two-color femtosecond pulses is analyzed by means of a semi-analytic model and finite-difference-time-domain simulations in 1D and 2D geometries. We show that produced THz signals interac t with free electron trajectories and thus influence significantly further THz generation upon propagation, i.e., make the process inherently nonlocal. This self-action plays a key role in the observed strong spectral broadening of the generated THz field. Diffraction limits the achievable THz bandwidth by efficiently depleting the low frequency amplitudes in the propagating field.
175 - Ziting Li , Bin Zeng , Wei Chu 2015
We experimentally investigate generation of molecular nitrogen-ion lasers with two femtosecond laser pulses at different wavelengths. The first pulse serves as the pump which ionizes the nitrogen molecules and excites the molecular ions to excited el ectronic states. The second pulse serves as the probe which leads to stimulated emission from the excited molecular ions. We observe that changing the angle between the polarization directions of the two pulses gives rise to elliptically polarized molecular nitrogen-ion laser fields, which is interpreted as a result of strong birefringence of the gain medium near the wavelengths of the molecular nitrogen-ion laser.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا