ﻻ يوجد ملخص باللغة العربية
Just a few decades after the discovery of the Charon Relay, and the ensuing First Contact War, relatively little is known about the population of planets linked by the Prothean mass relays. Understanding the nature of these systems and how they may differ from the broader population of planetary systems in our galaxy is key to both continued human habitation across the broader Galaxy, as well as to our understanding of the Prothean civilization. What factors motivated their choices of planetary systems? Characterizing these systems allows us to peer into Prothean society and culture, and make inferences about the preferences that drove their expansion throughout the Galaxy. In this study, we undertake a broad analysis of the systems recorded in the Systems Alliance Planetary Survey, examining their dynamical stability, orbital properties, and the climates of the inhabited worlds. We find that the Alliance data is inconsistent with both a modern understanding of planetary system dynamics, as well as with our understanding of Earth-like climate dynamics. We suggest this is due in part to security-related data obfuscation by the Alliance, and in part due to the real preferences of the Protheans.
An analysis of the relation between radio surface brightness and diameter, so-called Sigma-D relation, for planetary nebulae (PNe) is presented: i) the theoretical Sigma-D relation for the evolution of bremsstrahlung surface brightness is derived; ii
We present kinematic data for 211 bright planetary nebulae in eleven Local Group galaxies: M31 (137 PNe), M32 (13), M33 (33), Fornax (1), Sagittarius (3), NGC 147 (2), NGC 185 (5), NGC 205 (9), NGC 6822 (5), Leo A (1), and Sextans A (1). The data wer
Whether it is fluorescence emission from asteroids and moons, solar wind charge exchange from comets, exospheric escape from Mars, pion reactions on Venus, sprite lighting on Saturn, or the Io plasma torus in the Jovian magnetosphere, the Solar Syste
In this paper, we review the various ways in which an infrared stellar interferometer can be used to perform direct detection of extrasolar planetary systems. We first review the techniques based on classical stellar interferometry, where (complex) v
The TRAPPIST-1 planetary system provides an unprecedented opportunity to study terrestrial exoplanet evolution with the James Webb Space Telescope (JWST) and ground-based observatories. Since M dwarf planets likely experience extreme volatile loss, t