ترغب بنشر مسار تعليمي؟ اضغط هنا

The Sigma-D Relation for Planetary Nebulae: Preliminary Analysis

555   0   0.0 ( 0 )
 نشر من قبل Dragana Ili\\'c
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An analysis of the relation between radio surface brightness and diameter, so-called Sigma-D relation, for planetary nebulae (PNe) is presented: i) the theoretical Sigma-D relation for the evolution of bremsstrahlung surface brightness is derived; ii) contrary to the results obtained earlier for the Galactic supernova remnant (SNR) samples, our results show that the updated sample of Galactic PNe does not severely suffer from volume selection effect - Malmquist bias (same as for the extragalactic SNR samples) and; iii) we conclude that the empirical Sigma-D relation for PNe derived in this paper is not useful for valid determination of distances for all observed PNe with unknown distances.



قيم البحث

اقرأ أيضاً

The age-velocity dispersion relation is an important tool to understand the evolution of the disc of the Andromeda galaxy (M31) in comparison with the Milky Way. We use Planetary Nebulae (PNe) to obtain the age-velocity dispersion relation in differe nt radial bins of the M31 disc. We separate the observed PNe sample based on their extinction values into two distinct age populations. The observed velocities of our high- and low-extinction PNe, which correspond to higher and lower mass progenitors respectively, are fitted in de-projected elliptical bins to obtain their rotational velocities, $V_{phi}$, and corresponding dispersions, $rmsigma_{phi}$. We assign ages to the two PNe populations by comparing central-star properties of an archival sub-sample of PNe, having models fitted to their observed spectral features, to stellar evolution tracks. For the high- and low-extinction PNe, we find ages of $sim2.5$ Gyr and $sim4.5$ Gyr respectively, with distinct kinematics beyond a deprojected radius R$rm_{GC}= 14$ kpc. At R$rm_{GC}$=17--20 kpc, which is the equivalent distance in disc scale lengths of the Sun in the Milky Way disc, we obtain $rmsigma_{phi,~2.5~Gyr}= 61pm 14$ km s$^{-1}$ and $rmsigma_{phi,~4.5~Gyr}= 101pm 13$ km s$^{-1}$. The age-velocity dispersion relation for the M31 disc is obtained in two radial bins, R$rm_{GC}$=14--17 and 17--20 kpc. The high- and low-extinction PNe are associated with the young thin and old thicker disc of M31 respectively, whose velocity dispersion values increase with age. These values are almost twice and thrice that of the Milky Way disc stellar population of corresponding ages. From comparison with simulations of merging galaxies, we find that the age-velocity dispersion relation in the M31 disc measured using PNe is indicative of a single major merger that occurred 2.5 -- 4.5 Gyr ago with an estimated merger mass ratio $approx$ 1:5.
We derive the $Sigma$-$D$ relation of Galactic supernova remnants of shell-type separately at adiabatic-phase and at radiative-phase through two sets of different formulas, considering the different physical processes of shell-type remnants at both s tages. Also statistics on Galactic shell-type remnants about 57 was made. Then we do some comparison with other results obtained before. It shows that all the best fit lines in the $Sigma$-$D$ relation plots newly are to some extent flatter than those derived by some authors at early time. Our theoretical and statistical outcomes are in somewhat good consistency.
174 - Thomas Rauch 2007
Spectral analysis by means of NLTE model atmospheres has presently arrived at a high level of sophistication. High-resolution spectra of central stars of planetary nebulae can be reproduced in detail from the infrared to the X-ray wavelength range. In the case of LSV +4621, the exciting star of Sh 2-216, we demonstrate the state-of-the-art in the determination of photospheric properties like, e.g., effective temperature, surface gravity, and abundances of elements from hydrogen to nickel. From such detailed model atmospheres, we can reliably predict the ionizing spectrum of a central star which is a necessary input for the precise analysis of its ambient nebula. NLTE model-atmosphere spectra, however, are not only accessible for specialists. In the framework of the German Astrophysical Virtual Observatory (GAVO), we provide pre-calculated grids of tables with synthetic spectra of hot, compact stars as well as a tool to calculate individual model-atmosphere spectra in order to make the use of synthetic stellar spectra as easy as the use of blackbody flux distributions had been in the last century.
Just a few decades after the discovery of the Charon Relay, and the ensuing First Contact War, relatively little is known about the population of planets linked by the Prothean mass relays. Understanding the nature of these systems and how they may d iffer from the broader population of planetary systems in our galaxy is key to both continued human habitation across the broader Galaxy, as well as to our understanding of the Prothean civilization. What factors motivated their choices of planetary systems? Characterizing these systems allows us to peer into Prothean society and culture, and make inferences about the preferences that drove their expansion throughout the Galaxy. In this study, we undertake a broad analysis of the systems recorded in the Systems Alliance Planetary Survey, examining their dynamical stability, orbital properties, and the climates of the inhabited worlds. We find that the Alliance data is inconsistent with both a modern understanding of planetary system dynamics, as well as with our understanding of Earth-like climate dynamics. We suggest this is due in part to security-related data obfuscation by the Alliance, and in part due to the real preferences of the Protheans.
I review the progress in research on intracluster planetary nebulae over the last five years. Hundreds more intracluster planetary nebulae have been detected in the nearby Virgo and Fornax galaxy clusters, searches of several galaxy groups have been made, and intracluster planetary candidates have been detected in the distant Coma cluster. The first theoretical studies of intracluster planetaries have also been completed, studying their utility as tracers of the intracluster light as a whole, and also as individual objects. From the results to date, it appears that intracluster planetaries are common in galaxy clusters (10-20% of the total amount of starlight), but thus far, none have been detected in galaxy groups, a result which currently is not well understood. Limited spectroscopic follow-up of intracluster planetaries in Virgo indicate that they have a complex velocity structure, in agreement with numerical models of intracluster light. Hydrodynamic simulations of individual intracluster planetaries predict that their morphology is significantly altered by their intracluster environment, but their emission-line properties appear to be unaffected.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا