ترغب بنشر مسار تعليمي؟ اضغط هنا

Pandemic Dark Matter

123   0   0.0 ( 0 )
 نشر من قبل Torsten Bringmann
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a novel thermal production mechanism for dark matter based on the idea that dark matter particles $chi$ can transform (`infect) heat bath particles $psi$: $chi psi rightarrow chi chi$. For a small initial abundance of $chi$ this induces an exponential growth in the dark matter number density, closely resembling the epidemic curves of a spreading pathogen after an initial outbreak. To quantify this relation we present a sharp duality between the Boltzmann equation for the dark matter number density and epidemiological models for the spread of infectious diseases. Finally we demonstrate that the exponential growth naturally stops before $chi$ thermalizes with the heat bath, corresponding to a triumphant `flattening of the curve that matches the observed dark matter abundance.



قيم البحث

اقرأ أيضاً

We review sterile neutrinos as possible Dark Matter candidates. After a short summary on the role of neutrinos in cosmology and particle physics, we give a comprehensive overview of the current status of the research on sterile neutrino Dark Matter. First we discuss the motivation and limits obtained through astrophysical observations. Second, we review different mechanisms of how sterile neutrino Dark Matter could have been produced in the early universe. Finally, we outline a selection of future laboratory searches for keV-scale sterile neutrinos, highlighting their experimental challenges and discovery potential.
We present models of resonant self-interacting dark matter in a dark sector with QCD, based on analogies to the meson spectra in Standard Model QCD. For dark mesons made of two light quarks, we present a simple model that realizes resonant self-inter action (analogous to the $phi$-K-K system) and thermal freeze-out. We also consider asymmetric dark matter composed of heavy and light dark quarks to realize a resonant self-interaction (analogous to the $Upsilon(4S)$-B-B system) and discuss the experimental probes of both setups. Finally, we comment on the possible resonant self-interactions already built into SIMP and ELDER mechanisms while making use of lattice results to determine feasibility.
We have recently examined a large number of points in the parameter space of the phenomenological MSSM, the 19-dimensional parameter space of the CP-conserving MSSM with Minimal Flavor Violation. We determined whether each of these points satisfied e xisting experimental and theoretical constraints. This analysis provides insight into general features of the MSSM without reference to a particular SUSY breaking scenario or any other assumptions at the GUT scale. This study opens up new possibilities for SUSY phenomenology both in colliders and in astrophysical experiments. Here we shall discuss the implications of this analysis relevant to the study of dark matter.
We present a first calculation of the rate for plasmon production in semiconductors from nuclei recoiling against dark matter. The process is analogous to bremsstrahlung of transverse photon modes, but with a longitudinal plasmon mode emitted instead . For dark matter in the 10 MeV - 1 GeV mass range, we find that the plasmon bremsstrahlung rate is 4-5 orders of magnitude smaller than that for elastic scattering, but 4-5 orders of magnitude larger than the transverse bremsstrahlung rate. Because the plasmon can decay into electronic excitations and has characteristic energy given by the plasma frequency $omega_p$, with $omega_p approx 16$ eV in Si crystals, plasmon production provides a distinctive signature and new method to detect nuclear recoils from sub-GeV dark matter.
We consider the prospects for multiple dark matter direct detection experiments to determine if the interactions of a dark matter candidate are isospin-violating. We focus on theoretically well-motivated examples of isospin-violating dark matter (IVD M), including models in which dark matter interactions with nuclei are mediated by a dark photon, a Z, or a squark. We determine that the best prospects for distinguishing IVDM from the isospin-invariant scenario arise in the cases of dark photon- or Z-mediated interactions, and that the ideal experimental scenario would consist of large exposure xenon- and neon-based detectors. If such models just evade current direct detection limits, then one could distinguish such models from the standard isospin-invariant case with two detectors with of order 100 ton-year exposure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا