ﻻ يوجد ملخص باللغة العربية
Lattice results on sigma terms and global analysis of parton momentum fractions are used to give the quark and glue fractions of the proton mass and rest energy. The mass decomposition in terms of the trace of the energy-momentum tensor is renormalization group invariant. The decomposition of the rest energy from the Hamiltonian and the gravitational form factors are scheme and scale dependent. The separation of the energy-momentum tensor into the traceless part which is composed of the quark and glue parton momentum fractions and the trace part has the minimum scheme dependence. We identify the glue part of the trace anomaly $langle H_{beta}rangle $ as the vacuum energy from the glue condensate in the vacuum. From the metric term of the gravitational form factors, which is the stress part of the stress-energy-momentum tensor, we find that the trace part of the rest energy, dominated by $langle H_{beta}rangle$, gives a {it constant} restoring pressure which balances that from the traceless part of the Hamiltonian to confine the hadron, much like the cosmological constant Einstein introduced for a static universe. From a lattice calculation of $langle H_{beta}rangle$ in the charmonium, we deduce the associated string tension which turns out to be in good agreement with that from a Cornell potential which fits the charmonium spectrum.
Different decompositions (sum rules) for the proton mass have been proposed in the literature. All of them are related to the energy-momentum tensor in quantum chromodynamics. We review and revisit these decompositions by paying special attention to
We study the anomalous scale symmetry breaking effects on the proton mass in QCD due to quantum fluctuations at ultraviolet scales. We confirm that a novel contribution naturally arises as a part of the proton mass, which we call the quantum anomalou
We report results on the proton mass decomposition and also on related quark and glue momentum fractions. The results are based on overlap valence fermions on four ensembles of $N_f = 2+1$ DWF configurations with three lattice spacings and three volu
The Cottingham formula expresses the leading contribution of the electromagnetic interaction to the proton-neutron mass difference as an integral over the forward Compton amplitude. Since quarks and gluons reggeize, the dispersive representation of t
We report a quark spin calculation from the anomalous Ward identity with overlap fermions on 2+1 flavor dynamical fermion configurations with light sea quark masses. Such a formulation decomposes the divergence of the flavor-singlet axial-vector curr