ﻻ يوجد ملخص باللغة العربية
It is known that the numerical invariants Betti numbers and Bass numbers are worthwhile tools for decoding a large amount of information about modules over commutative rings. We highlight this fact, further, by establishing some criteria for certain semidualizing complexes via their Betti and Bass numbers. Two distinguished types of semidualizing complexes are the shifts of the underlying rings and dualizing complexes. Let $C$ be a semidualizing complex for an analytically irreducible local ring $R$ and set $n:=sup C$ and $d:=dim_RC$. We show that $C$ is quasi-isomorphic to a shift of $R$ if and only if the $n$th Betti number of $C$ is one. Also, we show that $C$ is a dualizing complex for $R$ if and only if the $d$th Bass number of $C$ is one.
Let $(A, m, k)$ be a Gorenstein local ring of dimension $ dgeq 1.$ Let $I$ be an ideal of $A$ with $htt(I) geq d-1.$ We prove that the numerical function [ n mapsto ell(ext_A^i(k, A/I^{n+1}))] is given by a polynomial of degree $d-1 $ in the case w
We introduce and study a class of objects that encompasses Christensen and Foxbys semidualizing modules and complexes and Kubiks quasi-dualizing modules: the class of $mathfrak{a}$-adic semidualizing modules and complexes. We give examples and equiva
A result of Foxby states that if there exists a complex with finite depth, finite flat dimension, and finite injective dimension over a local ring $R$, then $R$ is Gorenstein. In this paper we investigate some homological dimensions involving a semid
We introduce a new class of monomial ideals which we call symmetric shifted ideals. Symmetric shifted ideals are fixed by the natural action of the symmetric group and, within the class of monomial ideals fixed by this action, they can be considered
We study homological properties of random quadratic monomial ideals in a polynomial ring $R = {mathbb K}[x_1, dots x_n]$, utilizing methods from the Erd{o}s-R{e}nyi model of random graphs. Here for a graph $G sim G(n, p)$ we consider the `coedge idea