ترغب بنشر مسار تعليمي؟ اضغط هنا

Betti numbers of symmetric shifted ideals

183   0   0.0 ( 0 )
 نشر من قبل Federico Galetto
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a new class of monomial ideals which we call symmetric shifted ideals. Symmetric shifted ideals are fixed by the natural action of the symmetric group and, within the class of monomial ideals fixed by this action, they can be considered as an analogue of stable monomial ideals within the class of monomial ideals. We show that a symmetric shifted ideal has linear quotients and compute its (equivariant) graded Betti numbers. As an application of this result, we obtain several consequences for graded Betti numbers of symbolic powers of defining ideals of star configurations.



قيم البحث

اقرأ أيضاً

We study homological properties of random quadratic monomial ideals in a polynomial ring $R = {mathbb K}[x_1, dots x_n]$, utilizing methods from the Erd{o}s-R{e}nyi model of random graphs. Here for a graph $G sim G(n, p)$ we consider the `coedge idea l $I_G$ corresponding to the missing edges of $G$, and study Betti numbers of $R/I_G$ as $n$ tends to infinity. Our main results involve fixing the edge probability $p = p(n)$ so that asymptotically almost surely the Krull dimension of $R/I_G$ is fixed. Under these conditions we establish various properties regarding the Betti table of $R/I_G$, including sharp bounds on regularity and projective dimension, and distribution of nonzero normalized Betti numbers. These results extend work of Erman and Yang, who studied such ideals in the context of conjectured phenomena in the nonvanishing of asymptotic syzygies. Along the way we establish results regarding subcomplexes of random clique complexes as well as notions of higher-dimensional vertex $k$-connectivity that may be of independent interest.
115 - Luca Amata , Marilena Crupi 2021
Let $K$ be a field and $S = K[x_1,dots,x_n]$ be a polynomial ring over $K$. We discuss the behaviour of the extremal Betti numbers of the class of squarefree strongly stable ideals. More precisely, we give a numerical characterization of the possible extremal Betti numbers (values as well as positions) of such a class of squarefree monomial ideals.
Let $R = mathbb{K}[x_1, ldots, x_n]$ and $I subset R$ be a homogeneous ideal. In this article, we first obtain certain sufficient conditions for the subadditivity of $R/I$. As a consequence, we prove that if $I$ is generated by homogeneous complete i ntersection, then subadditivity holds for $R/I$. We then study a conjecture of Avramov, Conca and Iyengar on subadditivity, when $I$ is a monomial ideal with $R/I$ Koszul. We identify several classes of edge ideals of graphs $G$ such that the subadditivity holds for $R/I(G)$. We then study the strand connectivity of edge ideals and obtain several classes of graphs whose edge ideals are strand connected. Finally, we compute upper bounds for multigraded Betti numbers of several classes of edge ideals.
We study the extremal Betti numbers of the class of $t$--spread strongly stable ideals. More precisely, we determine the maximal number of admissible extremal Betti numbers for such ideals, and thereby we generalize the known results for $tin {1,2}$.
Let $G$ be a finite simple graph on the vertex set $V(G) = {x_1, ldots, x_n}$ and $I(G) subset K[V(G)]$ its edge ideal, where $K[V(G)]$ is the polynomial ring in $x_1, ldots, x_n$ over a field $K$ with each ${rm deg} x_i = 1$ and where $I(G)$ is gene rated by those squarefree quadratic monomials $x_ix_j$ for which ${x_i, x_j}$ is an edge of $G$. In the present paper, given integers $1 leq a leq r$ and $s geq 1$, the existence of a finite connected simple graph $G = G(a, r, d)$ with ${rm im}(G) = a$, ${rm reg}(R/I(G)) = r$ and ${rm deg} h_{K[V(G)]/I(G)} (lambda) = s$, where ${rm im}(G)$ is the induced matching number of $G$ and where $h_{K[V(G)]/I(G)} (lambda)$ is the $h$-polynomial of $K[V(G)]/I(G)$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا