ﻻ يوجد ملخص باللغة العربية
We study the influence of the baryon chemical potential $mu_B$ on the properties of the Quark-Gluon-Plasma (QGP) in and out-of equilibrium. The description of the QGP in equilibrium is based on the effective propagators and couplings from the Dynamical QuasiParticle Model (DQPM) that is matched to reproduce the equation-of-state of the partonic system above the deconfinement temperature $T_c$ from lattice Quantum Chromodynamics (QCD). We calculate the transport coefficients such as the ratio of shear viscosity $eta$ and bulk viscosity $zeta$ over entropy density $s$, i.e., $eta/s$ and $zeta/s$ in the $(T,mu_B)$ plane and compare to other model results available at $mu_B =0$. The out-of equilibrium study of the QGP is performed within the Parton-Hadron-String Dynamics (PHSD) transport approach extended in the partonic sector by explicitly calculating the total and differential partonic scattering cross sections (based on the DQPM propagators and couplings) evaluated at the actual temperature $T$ and baryon chemical potential $mu_B$ in each individual space-time cell of the partonic scattering. The traces of their $mu_B$ dependences are investigated in different observables for relativistic heavy-ion collisions with a focus on the directed and elliptic flow coefficients $v_1, v_2$ in the energy range 7.7 GeV $le sqrt{s_{NN}}le 200$ GeV.
We study the influence of the baryon chemical potential $mu_B$ on the properties of the Quark-Gluon-Plasma (QGP) in and out-of equilibrium. The description of the QGP in equilibrium is based on the effective propagators and couplings from the Dynamic
We review the transport properties of the strongly interacting quark-gluon plasma (QGP) created in heavy-ion collisions at ultrarelativistic energies, i.e. out-of equilibrium, and compare them to the equilibrium properties. The description of the str
This is a contribution for the Proceedings of the Conference Hot Quarks 2016, held at South Padre Island, Texas, USA, 12-17 September 2016. I briefly review some thermodynamic and baryon transport results obtained from a bottom-up Einstein-Maxwell-Di
We argue that hadron multiplicities in central high energy nucleus-nucleus collisions are established very close to the phase boundary between hadronic and quark matter. In the hadronic picture this can be described by multi-particle collisions whose
We calculate transport coefficients of the quark-gluon plasma (QGP) within the dynamical quasiparticle model (DQPM) by explicitly computing the parton interaction rates as a function of temperature $T$ and baryon chemical potential $mu_B$ on the basi