ﻻ يوجد ملخص باللغة العربية
The thermodynamical quantities and response functions are useful to describe the particle production in heavy-ion collisions as they reveal crucial information about the produced system. While the study of isothermal compressibility provides inference about the viscosity of the medium, the speed of sound helps in understanding the equation of state. With an aim towards understanding the system produced in the heavy-ion collision, we have made an attempt to study isothermal compressibility and speed of sound as a function of charged particle multiplicity in heavy-ion collisions at $sqrt{s_{NN}}$ = $2.76$ TeV, $5.02$ TeV, and $5.44$ TeV using Pearson formalism.
The pseudorapidity distribution of charged hadron over a wide $eta$ range gives us crucial information about the dynamics of particle production. Constraint on the detector acceptance, particularly at forward rapidities, demands a proper distribution
We calculate the speed of sound $c_s$ in an ideal gas of resonances whose mass spectrum is assumed to have the Hagedorn form $rho(m) sim m^{-a}exp{bm}$, which leads to singular behavior at the critical temperature $T_c = 1/b$. With $a = 4$ the pressu
The speed of sound ($c_s$) is studied to understand the hydrodynamical evolution of the matter created in heavy-ion collisions. The quark-gluon plasma (QGP) formed in heavy-ion collisions evolves from an initial QGP to the hadronic phase via a possib
The estimate based on the parton model is made on the rate of production of Super Heavy Particle ( SHP ) in subthreshold collision of heavy ions at LHC. For the one month run of lead-lead collision the yield of 16 TeV particle is of the order of 70 per year.
Study of thermal particle production is crucial to understand the space-time evolution of the fireball produced in high energy heavy-ion collisions. We consider thermal particle production within the framework of relativistic viscous hydrodynamics an