ﻻ يوجد ملخص باللغة العربية
The speed of sound ($c_s$) is studied to understand the hydrodynamical evolution of the matter created in heavy-ion collisions. The quark-gluon plasma (QGP) formed in heavy-ion collisions evolves from an initial QGP to the hadronic phase via a possible mixed phase. Due to the system expansion in a first order phase transition scenario, the speed of sound reduces to zero as the specific heat diverges. We study the speed of sound for systems, which deviate from a thermalized Boltzmann distribution using non-extensive Tsallis statistics. In the present work, we calculate the speed of sound as a function of temperature for different $q$-values for a hadron resonance gas. We observe a similar mass cut-off behaviour in non-extensive case for $c^{2}_s$ by including heavier particles, as is observed in the case of a hadron resonance gas following equilibrium statistics. Also, we explicitly present that the temperature where the mass cut-off starts, varies with the $q$-parameter which hints at a relation between the degree of non-equilibrium and the limiting temperature of the system. It is shown that for values of $q$ above approximately 1.13 all criticality disappear in the speed of sound, i.e. the decrease in the value of the speed of sound, observed at lower values of $q$, disappears completely.
The nuclear modification factor is derived using Tsallis non-extensive statistics in relaxation time approximation. The variation of nuclear modification factor with transverse momentum for different values of non-extensive parameter, $q$, is also ob
We calculate the speed of sound $c_s$ in an ideal gas of resonances whose mass spectrum is assumed to have the Hagedorn form $rho(m) sim m^{-a}exp{bm}$, which leads to singular behavior at the critical temperature $T_c = 1/b$. With $a = 4$ the pressu
The possibility of formation of Bose-Einstein Condensation (BEC) is studied in $pp$ collisions at $sqrt s$ = 7 TeV at the Large Hadron Collider. A thermodynamically consistent non-extensive formulation of the identified hadron transverse momentum dis
We present here the computation of electrical and thermal conductivity by solving the Boltzmann transport equation in relaxation time approximation. We use the $q$-generalized Boltzmann distribution function to incorporate the effects of non-extensiv
We argue that recent high energy CERN LHC experiments on transverse momenta distributions of produced particles provide us new, so far unnoticed and not fully appreciated, information on the underlying production processes. To this end we concentrate