ﻻ يوجد ملخص باللغة العربية
Unobserved confounding is one of the greatest challenges for causal discovery. The case in which unobserved variables have a widespread effect on many of the observed ones is particularly difficult because most pairs of variables are conditionally dependent given any other subset, rendering the causal effect unidentifiable. In this paper we show that beyond conditional independencies, under the principle of independent mechanisms, unobserved confounding in this setting leaves a statistical footprint in the observed data distribution that allows for disentangling spurious and causal effects. Using this insight, we demonstrate that a sparse linear Gaussian directed acyclic graph among observed variables may be recovered approximately and propose an adjusted score-based causal discovery algorithm that may be implemented with general purpose solvers and scales to high-dimensional problems. We find, in addition, that despite the conditions we pose to guarantee causal recovery, performance in practice is robust to large deviations in model assumptions.
The ability to generalize from observed to new related environments is central to any form of reliable machine learning, yet most methods fail when moving beyond i.i.d data. This work argues that in some cases the reason lies in a misapreciation of t
Causal inference with observational data can be performed under an assumption of no unobserved confounders (unconfoundedness assumption). There is, however, seldom clear subject-matter or empirical evidence for such an assumption. We therefore develo
Algorithms are commonly used to predict outcomes under a particular decision or intervention, such as predicting whether an offender will succeed on parole if placed under minimal supervision. Generally, to learn such counterfactual prediction models
Reliable treatment effect estimation from observational data depends on the availability of all confounding information. While much work has targeted treatment effect estimation from observational data, there is relatively little work in the setting
Progressively applying Gaussian noise transforms complex data distributions to approximately Gaussian. Reversing this dynamic defines a generative model. When the forward noising process is given by a Stochastic Differential Equation (SDE), Song et a