ﻻ يوجد ملخص باللغة العربية
Causal inference with observational data can be performed under an assumption of no unobserved confounders (unconfoundedness assumption). There is, however, seldom clear subject-matter or empirical evidence for such an assumption. We therefore develop uncertainty intervals for average causal effects based on outcome regression estimators and doubly robust estimators, which provide inference taking into account both sampling variability and uncertainty due to unobserved confounders. In contrast with sampling variation, uncertainty due unobserved confounding does not decrease with increasing sample size. The intervals introduced are obtained by deriving the bias of the estimators due to unobserved confounders. We are thus also able to contrast the size of the bias due to violation of the unconfoundedness assumption, with bias due to misspecification of the models used to explain potential outcomes. This is illustrated through numerical experiments where bias due to moderate unobserved confounding dominates misspecification bias for typical situations in terms of sample size and modeling assumptions. We also study the empirical coverage of the uncertainty intervals introduced and apply the results to a study of the effect of regular food intake on health. An R-package implementing the inference proposed is available.
Although the exposure can be randomly assigned in studies of mediation effects, any form of direct intervention on the mediator is often infeasible. As a result, unmeasured mediator-outcome confounding can seldom be ruled out. We propose semiparametr
Skepticism about the assumption of no unmeasured confounding, also known as exchangeability, is often warranted in making causal inferences from observational data; because exchangeability hinges on an investigators ability to accurately measure cova
Inferring causal relationships or related associations from observational data can be invalidated by the existence of hidden confounding. We focus on a high-dimensional linear regression setting, where the measured covariates are affected by hidden c
The ability to generalize from observed to new related environments is central to any form of reliable machine learning, yet most methods fail when moving beyond i.i.d data. This work argues that in some cases the reason lies in a misapreciation of t
This paper considers fixed effects estimation and inference in linear and nonlinear panel data models with random coefficients and endogenous regressors. The quantities of interest -- means, variances, and other moments of the random coefficients --