ﻻ يوجد ملخص باللغة العربية
It has been widely recognized that the 0/1 loss function is one of the most natural choices for modelling classification errors, and it has a wide range of applications including support vector machines and 1-bit compressed sensing. Due to the combinatorial nature of the 0/1 loss function, methods based on convex relaxations or smoothing approximations have dominated the existing research and are often able to provide approximate solutions of good quality. However, those methods are not optimizing the 0/1 loss function directly and hence no optimality has been established for the original problem. This paper aims to study the optimality conditions of the 0/1 function minimization, and for the first time to develop Newtons method that directly optimizes the 0/1 function with a local quadratic convergence under reasonable conditions. Extensive numerical experiments demonstrate its superior performance as one would expect from Newton-type methods.ions. Extensive numerical experiments demonstrate its superior performance as one would expect from Newton-type methods.
In a recent joint work, the author has developed a modification of Newtons method, named New Q-Newtons method, which can avoid saddle points and has quadratic rate of convergence. While good theoretical convergence guarantee has not been established
We are concerned with the tensor equations whose coefficient tensor is an M-tensor. We first propose a Newton method for solving the equation with a positive constant term and establish its global and quadratic convergence. Then we extend the method
This paper considers a class of constrained convex stochastic composite optimization problems whose objective function is given by the summation of a differentiable convex component, together with a nonsmooth but convex component. The nonsmooth compo
Monotone systems of polynomial equations (MSPEs) are systems of fixed-point equations $X_1 = f_1(X_1, ..., X_n),$ $..., X_n = f_n(X_1, ..., X_n)$ where each $f_i$ is a polynomial with positive real coefficients. The question of computing the least no
We propose a randomized algorithm with quadratic convergence rate for convex optimization problems with a self-concordant, composite, strongly convex objective function. Our method is based on performing an approximate Newton step using a random proj