ترغب بنشر مسار تعليمي؟ اضغط هنا

Convergence Thresholds of Newtons Method for Monotone Polynomial Equations

147   0   0.0 ( 0 )
 نشر من قبل Pascal Weil
 تاريخ النشر 2008
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Monotone systems of polynomial equations (MSPEs) are systems of fixed-point equations $X_1 = f_1(X_1, ..., X_n),$ $..., X_n = f_n(X_1, ..., X_n)$ where each $f_i$ is a polynomial with positive real coefficients. The question of computing the least non-negative solution of a given MSPE $vec X = vec f(vec X)$ arises naturally in the analysis of stochastic models such as stochastic context-free grammars, probabilistic pushdown automata, and back-button processes. Etessami and Yannakakis have recently adapted Newtons iterative method to MSPEs. In a previous paper we have proved the existence of a threshold $k_{vec f}$ for strongly connected MSPEs, such that after $k_{vec f}$ iterations of Newtons method each new iteration computes at least 1 new bit of the solution. However, the proof was purely existential. In this paper we give an upper bound for $k_{vec f}$ as a function of the minimal component of the least fixed-point $muvec f$ of $vec f(vec X)$. Using this result we show that $k_{vec f}$ is at most single exponential resp. linear for strongly connected MSPEs derived from probabilistic pushdown automata resp. from back-button processes. Further, we prove the existence of a threshold for arbitrary MSPEs after which each new iteration computes at least $1/w2^h$ new bits of the solution, where $w$ and $h$ are the width and height of the DAG of strongly connected components.



قيم البحث

اقرأ أيضاً

We are concerned with the tensor equations whose coefficient tensor is an M-tensor. We first propose a Newton method for solving the equation with a positive constant term and establish its global and quadratic convergence. Then we extend the method to solve the equation with a nonnegative constant term and establish its convergence. At last, we do numerical experiments to test the proposed methods. The results show that the proposed method is quite efficient.
112 - Tuyen Trung Truong 2021
In a recent joint work, the author has developed a modification of Newtons method, named New Q-Newtons method, which can avoid saddle points and has quadratic rate of convergence. While good theoretical convergence guarantee has not been established for this method, experiments on small scale problems show that the method works very competitively against other well known modifications of Newtons method such as Adaptive Cubic Regularization and BFGS, as well as first order methods such as Unbounded Two-way Backtracking Gradient Descent. In this paper, we resolve the convergence guarantee issue by proposing a modification of New Q-Newtons method, named New Q-Newtons method Backtracking, which incorporates a more sophisticated use of hyperparameters and a Backtracking line search. This new method has very good theoretical guarantees, which for a {bf Morse function} yields the following (which is unknown for New Q-Newtons method): {bf Theorem.} Let $f:mathbb{R}^mrightarrow mathbb{R}$ be a Morse function, that is all its critical points have invertible Hessian. Then for a sequence ${x_n}$ constructed by New Q-Newtons method Backtracking from a random initial point $x_0$, we have the following two alternatives: i) $lim_{nrightarrowinfty}||x_n||=infty$, or ii) ${x_n}$ converges to a point $x_{infty}$ which is a {bf local minimum} of $f$, and the rate of convergence is {bf quadratic}. Moreover, if $f$ has compact sublevels, then only case ii) happens. As far as we know, for Morse functions, this is the best theoretical guarantee for iterative optimization algorithms so far in the literature. We have tested in experiments on small scale, with some further simplifie
It has been widely recognized that the 0/1 loss function is one of the most natural choices for modelling classification errors, and it has a wide range of applications including support vector machines and 1-bit compressed sensing. Due to the combin atorial nature of the 0/1 loss function, methods based on convex relaxations or smoothing approximations have dominated the existing research and are often able to provide approximate solutions of good quality. However, those methods are not optimizing the 0/1 loss function directly and hence no optimality has been established for the original problem. This paper aims to study the optimality conditions of the 0/1 function minimization, and for the first time to develop Newtons method that directly optimizes the 0/1 function with a local quadratic convergence under reasonable conditions. Extensive numerical experiments demonstrate its superior performance as one would expect from Newton-type methods.ions. Extensive numerical experiments demonstrate its superior performance as one would expect from Newton-type methods.
84 - Jiequn Han , Jihao Long 2018
The recently proposed numerical algorithm, deep BSDE method, has shown remarkable performance in solving high-dimensional forward-backward stochastic differential equations (FBSDEs) and parabolic partial differential equations (PDEs). This article la ys a theoretical foundation for the deep BSDE method in the general case of coupled FBSDEs. In particular, a posteriori error estimation of the solution is provided and it is proved that the error converges to zero given the universal approximation capability of neural networks. Numerical results are presented to demonstrate the accuracy of the analyzed algorithm in solving high-dimensional coupled FBSDEs.
We propose in this paper New Q-Newtons method. The update rule is very simple conceptually, for example $x_{n+1}=x_n-w_n$ where $w_n=pr_{A_n,+}(v_n)-pr_{A_n,-}(v_n)$, with $A_n= abla ^2f(x_n)+delta _n|| abla f(x_n)||^2.Id$ and $v_n=A_n^{-1}. abla f(x _n)$. Here $delta _n$ is an appropriate real number so that $A_n$ is invertible, and $pr_{A_n,pm}$ are projections to the vector subspaces generated by eigenvectors of positive (correspondingly negative) eigenvalues of $A_n$. The main result of this paper roughly says that if $f$ is $C^3$ (can be unbounded from below) and a sequence ${x_n}$, constructed by the New Q-Newtons method from a random initial point $x_0$, {bf converges}, then the limit point is a critical point and is not a saddle point, and the convergence rate is the same as that of Newtons method. The first author has recently been successful incorporating Backtracking line search to New Q-Newtons method, thus resolving the convergence guarantee issue observed for some (non-smooth) cost functions. An application to quickly finding zeros of a univariate meromorphic function will be discussed. Various experiments are performed, against well known algorithms such as BFGS and Adaptive Cubic Regularization are presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا