ﻻ يوجد ملخص باللغة العربية
Monotone systems of polynomial equations (MSPEs) are systems of fixed-point equations $X_1 = f_1(X_1, ..., X_n),$ $..., X_n = f_n(X_1, ..., X_n)$ where each $f_i$ is a polynomial with positive real coefficients. The question of computing the least non-negative solution of a given MSPE $vec X = vec f(vec X)$ arises naturally in the analysis of stochastic models such as stochastic context-free grammars, probabilistic pushdown automata, and back-button processes. Etessami and Yannakakis have recently adapted Newtons iterative method to MSPEs. In a previous paper we have proved the existence of a threshold $k_{vec f}$ for strongly connected MSPEs, such that after $k_{vec f}$ iterations of Newtons method each new iteration computes at least 1 new bit of the solution. However, the proof was purely existential. In this paper we give an upper bound for $k_{vec f}$ as a function of the minimal component of the least fixed-point $muvec f$ of $vec f(vec X)$. Using this result we show that $k_{vec f}$ is at most single exponential resp. linear for strongly connected MSPEs derived from probabilistic pushdown automata resp. from back-button processes. Further, we prove the existence of a threshold for arbitrary MSPEs after which each new iteration computes at least $1/w2^h$ new bits of the solution, where $w$ and $h$ are the width and height of the DAG of strongly connected components.
We are concerned with the tensor equations whose coefficient tensor is an M-tensor. We first propose a Newton method for solving the equation with a positive constant term and establish its global and quadratic convergence. Then we extend the method
In a recent joint work, the author has developed a modification of Newtons method, named New Q-Newtons method, which can avoid saddle points and has quadratic rate of convergence. While good theoretical convergence guarantee has not been established
It has been widely recognized that the 0/1 loss function is one of the most natural choices for modelling classification errors, and it has a wide range of applications including support vector machines and 1-bit compressed sensing. Due to the combin
The recently proposed numerical algorithm, deep BSDE method, has shown remarkable performance in solving high-dimensional forward-backward stochastic differential equations (FBSDEs) and parabolic partial differential equations (PDEs). This article la
We propose in this paper New Q-Newtons method. The update rule is very simple conceptually, for example $x_{n+1}=x_n-w_n$ where $w_n=pr_{A_n,+}(v_n)-pr_{A_n,-}(v_n)$, with $A_n= abla ^2f(x_n)+delta _n|| abla f(x_n)||^2.Id$ and $v_n=A_n^{-1}. abla f(x