ﻻ يوجد ملخص باللغة العربية
Proof-of-Work (PoW) is the most widely adopted incentive model in current blockchain systems, which unfortunately is energy inefficient. Proof-of-Stake (PoS) is then proposed to tackle the energy issue. The rich-get-richer concern of PoS has been heavily debated in the blockchain community. The debate is centered around the argument that whether rich miners possessing more stakes will obtain higher staking rewards and further increase their potential income in the future. In this paper, we define two types of fairness, i.e., expectational fairness and robust fairness, that are useful for answering this question. In particular, expectational fairness illustrates that the expected income of a miner is proportional to her initial investment, indicating that the expected return on investment is a constant. To better capture the uncertainty of mining outcomes, robust fairness is proposed to characterize whether the return on investment concentrates to a constant with high probability as time evolves. Our analysis shows that the classical PoW mechanism can always preserve both types of fairness as long as the mining game runs for a sufficiently long time. Furthermore, we observe that current PoS blockchains implement various incentive models and discuss three representatives, namely ML-PoS, SL-PoS and C-PoS. We find that (i) ML-PoS (e.g., Qtum and Blackcoin) preserves expectational fairness but may not achieve robust fairness, (ii) SL-PoS (e.g., NXT) does not protect any type of fairness, and (iii) C-PoS (e.g., Ethereum 2.0) outperforms ML-PoS in terms of robust fairness while still maintaining expectational fairness. Finally, massive experiments on real blockchain systems and extensive numerical simulations are performed to validate our analysis.
In our model, $n$ traders interact with each other and with a central bank; they are taxed on the money they make, some of which is dissipated away by corruption. A generic feature of our model is that the richest trader always wins by consuming all
The rich-get-richer mechanism (agents increase their ``wealth randomly at a rate proportional to their holdings) is often invoked to explain the Pareto power-law distribution observed in many physical situations, such as the degree distribution of gr
Under preferential attachment (PA) network growth models late arrivals are at a disadvantage with regard to their final degrees. Previous extensions of PA have addressed this deficiency by either adding the notion of node fitness to PA, usually drawn
We consider settings in which we wish to incentivize myopic agents (such as Airbnb landlords, who may emphasize short-term profits and property safety) to treat arriving clients fairly, in order to prevent overall discrimination against individuals o
The practical Byzantine fault tolerant (PBFT) consensus mechanism is one of the most basic consensus algorithms (or protocols) in blockchain technologies, thus its performance evaluation is an interesting and challenging topic due to a higher complex