ﻻ يوجد ملخص باللغة العربية
Under preferential attachment (PA) network growth models late arrivals are at a disadvantage with regard to their final degrees. Previous extensions of PA have addressed this deficiency by either adding the notion of node fitness to PA, usually drawn from some fitness score distributions, or by using fitness alone to control attachment. Here we introduce a new dynamical approach to address late arrivals by adding a recent-degree-change bias to PA so that nodes with higher relative degree change in temporal proximity to an arriving node get an attachment probability boost. In other words, if PA describes a rich-get-richer mechanism, and fitness-based approaches describe good-get-richer mechanisms, then our model can be characterized as a hot-get-richer mechanism, where hotness is determined by the rate of degree change over some recent past. The proposed model produces much later high-ranking nodes than the PA model and, under certain parameters, produces networks with structure similar to PA networks.
In our model, $n$ traders interact with each other and with a central bank; they are taxed on the money they make, some of which is dissipated away by corruption. A generic feature of our model is that the richest trader always wins by consuming all
Proof-of-Work (PoW) is the most widely adopted incentive model in current blockchain systems, which unfortunately is energy inefficient. Proof-of-Stake (PoS) is then proposed to tackle the energy issue. The rich-get-richer concern of PoS has been hea
The rich-get-richer mechanism (agents increase their ``wealth randomly at a rate proportional to their holdings) is often invoked to explain the Pareto power-law distribution observed in many physical situations, such as the degree distribution of gr
Understanding prospective clients becomes increasingly important as companies aim to enlarge their market bases. Traditional approaches typically treat each client in isolation, either studying its interactions or similarities with existing clients.
Online platforms are an increasingly popular tool for people to produce, promote or sell their work. However recent studies indicate that social disparities and biases present in the real world might transfer to online platforms and could be exacerba