ﻻ يوجد ملخص باللغة العربية
In this paper, we introduce and study the class $S$-$mathcal{F}$-ML of $S$-Mittag-Leffler modules with respect to all flat modules. We show that a ring $R$ is $S$-coherent if and only if $S$-$mathcal{F}$-ML is closed under submodules. As an application, we obtain the $S$-version of Chase Theorem: a ring $R$ is $S$-coherent if and only if any direct product of $R$ is $S$-flat if and only if any direct product of flat $R$-modules is $S$-flat. Consequently, we provide an answer to the open question proposed by D. Bennis and M. El Hajoui [3].
Let $R$ be a commutative ring. If the nilpotent radical $Nil(R)$ of $R$ is a divided prime ideal, then $R$ is called a $phi$-ring. In this paper, we first distinguish the classes of nonnil-coherent rings and $phi$-coherent rings introduced by Bacem a
Let $R$ be a commutative ring with identity and $S$ a multiplicative subset of $R$. First, we introduce and study the $S$-projective dimensions and $S$-injective dimensions of $R$-modules, and then explore the $S$-global dimension $S$-gl.dim$(R)$ of
Let $R$ be a ring and $S$ a multiplicative subset of $R$. An $R$-module $P$ is called $S$-projective provided that the induced sequence $0rightarrow {rm Hom}_R(P,A)rightarrow {rm Hom}_R(P,B)rightarrow {rm Hom}_R(P,C)rightarrow 0$ is $S$-exact for any
This article generalizes joint work of the first author and I. Swanson to the $s$-multiplicity recently introduced by the second author. For $k$ a field and $X = [ x_{i,j}]$ a $m times n$-matrix of variables, we utilize Grobner bases to give a closed
In this paper, we introduce and study the $S$-weak global dimension $S$-w.gl.dim$(R)$ of a commutative ring $R$ for some multiplicative subset $S$ of $R$. Moreover, commutative rings with $S$-weak global dimension at most $1$ are studied. Finally, we