ترغب بنشر مسار تعليمي؟ اضغط هنا

The s-multiplicity function of 2x2-determinantal rings

80   0   0.0 ( 0 )
 نشر من قبل Lance Miller
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This article generalizes joint work of the first author and I. Swanson to the $s$-multiplicity recently introduced by the second author. For $k$ a field and $X = [ x_{i,j}]$ a $m times n$-matrix of variables, we utilize Grobner bases to give a closed form the length $lambda( k[X] / (I_2(X) + mathfrak{m}^{ lceil sq rceil} + mathfrak{m}^{[q]} ))$ where $s in mathbf{Z}[p^{-1}]$, $q$ is a sufficiently large power of $p$, and $mathfrak{m}$ is the homogeneous maximal ideal of $k[X]$. This shows this length is always eventually a {it polynomial} function of $q$ for all $s$.



قيم البحث

اقرأ أيضاً

Let k be an arbitrary field (of arbitrary characteristic) and let X = [x_{i,j}] be a generic m x n matrix of variables. Denote by I_2(X) the ideal in k[X] = k[x_{i,j}: i = 1, ..., m; j = 1, ..., n] generated by the 2 x 2 minors of X. We give a recurs ive formulation for the lengths of the k[X]-module k[X]/(I_2(X) + (x_{1,1}^q,..., x_{m,n}^q)) as q varies over all positive integers using Grobner basis. This is a generalized Hilbert-Kunz function, and our formulation proves that it is a polynomial function in q. We give closed forms for the cases when m is at most 2, %as well as the closed forms for some other special length functions. We apply our method to give closed forms for these Hilbert-Kunz functions for cases $m le 2$.
98 - Xiaolei Zhang , Wei Qi 2021
Let $R$ be a commutative ring with identity and $S$ a multiplicative subset of $R$. First, we introduce and study the $S$-projective dimensions and $S$-injective dimensions of $R$-modules, and then explore the $S$-global dimension $S$-gl.dim$(R)$ of a commutative ring $R$ which is defined to be the supremum of $S$-projective dimensions of all $R$-modules. Finally, we investigated the $S$-global dimension of factor rings and polynomial rings.
229 - Xiaolei Zhang , Wei Qi , Wei Zhao 2021
In this paper, we introduce and study the class $S$-$mathcal{F}$-ML of $S$-Mittag-Leffler modules with respect to all flat modules. We show that a ring $R$ is $S$-coherent if and only if $S$-$mathcal{F}$-ML is closed under submodules. As an applicati on, we obtain the $S$-version of Chase Theorem: a ring $R$ is $S$-coherent if and only if any direct product of $R$ is $S$-flat if and only if any direct product of flat $R$-modules is $S$-flat. Consequently, we provide an answer to the open question proposed by D. Bennis and M. El Hajoui [3].
230 - Xiaolei Zhang 2021
In this paper, we introduce and study the $S$-weak global dimension $S$-w.gl.dim$(R)$ of a commutative ring $R$ for some multiplicative subset $S$ of $R$. Moreover, commutative rings with $S$-weak global dimension at most $1$ are studied. Finally, we investigated the $S$-weak global dimension of factor rings and polynomial rings.
152 - Xiaolei Zhang , Wei Qi 2021
Let $R$ be a ring and $S$ a multiplicative subset of $R$. An $R$-module $P$ is called $S$-projective provided that the induced sequence $0rightarrow {rm Hom}_R(P,A)rightarrow {rm Hom}_R(P,B)rightarrow {rm Hom}_R(P,C)rightarrow 0$ is $S$-exact for any $S$-short exact sequence $0rightarrow Arightarrow Brightarrow Crightarrow 0$. Some characterizations and properties of $S$-projective modules are obtained. The notion of $S$-semisimple modules is also introduced. A ring $R$ is called an $S$-semisimple ring provided that every free $R$-module is $S$-semisimple. Several characterizations of $S$-semisimple rings are provided by using $S$-semisimple modules, $S$-projective modules, $S$-injective modules and $S$-split $S$-exact sequences.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا