ترغب بنشر مسار تعليمي؟ اضغط هنا

Revisiting the Loss Weight Adjustment in Object Detection

99   0   0.0 ( 0 )
 نشر من قبل Wenxin Yu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

By definition, object detection requires a multi-task loss in order to solve classification and regression tasks simultaneously. However, loss weight tends to be set manually in actuality. Therefore, a very practical problem that has not been studied so far arises: how to quickly find the loss weight that fits the current loss functions. In addition, when we choose different regression loss functions, whether the loss weight need to be adjusted and if so, how should it be adjusted still is a problem demanding prompt solution. In this paper, through experiments and theoretical analysis of prediction box shifting, we firstly find out three important conclusions about optimal loss weight allocation strategy, including (1) the classification loss curve decays faster than regression loss curve; (2) loss weight is less than 1; (3) the gap between classification and regression loss weight should not be too large. Then, based on the above conclusions, we propose an Adaptive Loss Weight Adjustment(ALWA) to solve the above two problems by dynamically adjusting the loss weight in the training process, according to statistical characteristics of loss values. By incorporating ALWA into both one-stage and two-stage object detectors, we show a consistent improvement on their performance using L1, SmoothL1 and CIoU loss, performance measures on popular object detection benchmarks including PASCAL VOC and MS COCO. The code is available at https://github.com/ywx-hub/ALWA.



قيم البحث

اقرأ أيضاً

114 - Xue Yang , Junchi Yan , Qi Ming 2021
Boundary discontinuity and its inconsistency to the final detection metric have been the bottleneck for rotating detection regression loss design. In this paper, we propose a novel regression loss based on Gaussian Wasserstein distance as a fundament al approach to solve the problem. Specifically, the rotated bounding box is converted to a 2-D Gaussian distribution, which enables to approximate the indifferentiable rotational IoU induced loss by the Gaussian Wasserstein distance (GWD) which can be learned efficiently by gradient back-propagation. GWD can still be informative for learning even there is no overlapping between two rotating bounding boxes which is often the case for small object detection. Thanks to its three unique properties, GWD can also elegantly solve the boundary discontinuity and square-like problem regardless how the bounding box is defined. Experiments on five datasets using different detectors show the effectiveness of our approach. Codes are available at https://github.com/yangxue0827/RotationDetection.
The existing solutions for object detection distillation rely on the availability of both a teacher model and ground-truth labels. We propose a new perspective to relax this constraint. In our framework, a student is first trained with pseudo labels generated by the teacher, and then fine-tuned using labeled data, if any available. Extensive experiments demonstrate improvements over existing object detection distillation algorithms. In addition, decoupling the teacher and ground-truth distillation in this framework provides interesting properties such: as 1) using unlabeled data to further improve the students performance, 2) combining multiple teacher models of different architectures, even with different object categories, and 3) reducing the need for labeled data (with only 20% of COCO labels, this method achieves the same performance as the model trained on the entire set of labels). Furthermore, a by-product of this approach is the potential usage for domain adaptation. We verify these properties through extensive experiments.
Designing proper loss functions for vision tasks has been a long-standing research direction to advance the capability of existing models. For object detection, the well-established classification and regression loss functions have been carefully des igned by considering diverse learning challenges. Inspired by the recent progress in network architecture search, it is interesting to explore the possibility of discovering new loss function formulations via directly searching the primitive operation combinations. So that the learned losses not only fit for diverse object detection challenges to alleviate huge human efforts, but also have better alignment with evaluation metric and good mathematical convergence property. Beyond the previous auto-loss works on face recognition and image classification, our work makes the first attempt to discover new loss functions for the challenging object detection from primitive operation levels. We propose an effective convergence-simulation driven evolutionary search algorithm, called CSE-Autoloss, for speeding up the search progress by regularizing the mathematical rationality of loss candidates via convergence property verification and model optimization simulation. CSE-Autoloss involves the search space that cover a wide range of the possible variants of existing losses and discovers best-searched loss function combination within a short time (around 1.5 wall-clock days). We conduct extensive evaluations of loss function search on popular detectors and validate the good generalization capability of searched losses across diverse architectures and datasets. Our experiments show that the best-discovered loss function combinations outperform default combinations by 1.1% and 0.8% in terms of mAP for two-stage and one-stage detectors on COCO respectively. Our searched losses are available at https://github.com/PerdonLiu/CSE-Autoloss.
We present a simple yet effective progressive self-guided loss function to facilitate deep learning-based salient object detection (SOD) in images. The saliency maps produced by the most relevant works still suffer from incomplete predictions due to the internal complexity of salient objects. Our proposed progressive self-guided loss simulates a morphological closing operation on the model predictions for progressively creating auxiliary training supervisions to step-wisely guide the training process. We demonstrate that this new loss function can guide the SOD model to highlight more complete salient objects step-by-step and meanwhile help to uncover the spatial dependencies of the salient object pixels in a region growing manner. Moreover, a new feature aggregation module is proposed to capture multi-scale features and aggregate them adaptively by a branch-wise attention mechanism. Benefiting from this module, our SOD framework takes advantage of adaptively aggregated multi-scale features to locate and detect salient objects effectively. Experimental results on several benchmark datasets show that our loss function not only advances the performance of existing SOD models without architecture modification but also helps our proposed framework to achieve state-of-the-art performance.
With the continuous improvement of the performance of object detectors via advanced model architectures, imbalance problems in the training process have received more attention. It is a common paradigm in object detection frameworks to perform multi- scale detection. However, each scale is treated equally during training. In this paper, we carefully study the objective imbalance of multi-scale detector training. We argue that the loss in each scale level is neither equally important nor independent. Different from the existing solutions of setting multi-task weights, we dynamically optimize the loss weight of each scale level in the training process. Specifically, we propose an Adaptive Variance Weighting (AVW) to balance multi-scale loss according to the statistical variance. Then we develop a novel Reinforcement Learning Optimization (RLO) to decide the weighting scheme probabilistically during training. The proposed dynamic methods make better utilization of multi-scale training loss without extra computational complexity and learnable parameters for backpropagation. Experiments show that our approaches can consistently boost the performance over various baseline detectors on Pascal VOC and MS COCO benchmark.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا