ترغب بنشر مسار تعليمي؟ اضغط هنا

Loss Function Discovery for Object Detection via Convergence-Simulation Driven Search

96   0   0.0 ( 0 )
 نشر من قبل Peidong Liu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Designing proper loss functions for vision tasks has been a long-standing research direction to advance the capability of existing models. For object detection, the well-established classification and regression loss functions have been carefully designed by considering diverse learning challenges. Inspired by the recent progress in network architecture search, it is interesting to explore the possibility of discovering new loss function formulations via directly searching the primitive operation combinations. So that the learned losses not only fit for diverse object detection challenges to alleviate huge human efforts, but also have better alignment with evaluation metric and good mathematical convergence property. Beyond the previous auto-loss works on face recognition and image classification, our work makes the first attempt to discover new loss functions for the challenging object detection from primitive operation levels. We propose an effective convergence-simulation driven evolutionary search algorithm, called CSE-Autoloss, for speeding up the search progress by regularizing the mathematical rationality of loss candidates via convergence property verification and model optimization simulation. CSE-Autoloss involves the search space that cover a wide range of the possible variants of existing losses and discovers best-searched loss function combination within a short time (around 1.5 wall-clock days). We conduct extensive evaluations of loss function search on popular detectors and validate the good generalization capability of searched losses across diverse architectures and datasets. Our experiments show that the best-discovered loss function combinations outperform default combinations by 1.1% and 0.8% in terms of mAP for two-stage and one-stage detectors on COCO respectively. Our searched losses are available at https://github.com/PerdonLiu/CSE-Autoloss.



قيم البحث

اقرأ أيضاً

Arbitrary-oriented objects exist widely in natural scenes, and thus the oriented object detection has received extensive attention in recent years. The mainstream rotation detectors use oriented bounding boxes (OBB) or quadrilateral bounding boxes (Q BB) to represent the rotating objects. However, these methods suffer from the representation ambiguity for oriented object definition, which leads to suboptimal regression optimization and the inconsistency between the loss metric and the localization accuracy of the predictions. In this paper, we propose a Representation Invariance Loss (RIL) to optimize the bounding box regression for the rotating objects. Specifically, RIL treats multiple representations of an oriented object as multiple equivalent local minima, and hence transforms bounding box regression into an adaptive matching process with these local minima. Then, the Hungarian matching algorithm is adopted to obtain the optimal regression strategy. We also propose a normalized rotation loss to alleviate the weak correlation between different variables and their unbalanced loss contribution in OBB representation. Extensive experiments on remote sensing datasets and scene text datasets show that our method achieves consistent and substantial improvement. The source code and trained models are available at https://github.com/ming71/RIDet.
98 - Wenxin Yu , Bin Hu , Yucheng Hu 2021
By definition, object detection requires a multi-task loss in order to solve classification and regression tasks simultaneously. However, loss weight tends to be set manually in actuality. Therefore, a very practical problem that has not been studied so far arises: how to quickly find the loss weight that fits the current loss functions. In addition, when we choose different regression loss functions, whether the loss weight need to be adjusted and if so, how should it be adjusted still is a problem demanding prompt solution. In this paper, through experiments and theoretical analysis of prediction box shifting, we firstly find out three important conclusions about optimal loss weight allocation strategy, including (1) the classification loss curve decays faster than regression loss curve; (2) loss weight is less than 1; (3) the gap between classification and regression loss weight should not be too large. Then, based on the above conclusions, we propose an Adaptive Loss Weight Adjustment(ALWA) to solve the above two problems by dynamically adjusting the loss weight in the training process, according to statistical characteristics of loss values. By incorporating ALWA into both one-stage and two-stage object detectors, we show a consistent improvement on their performance using L1, SmoothL1 and CIoU loss, performance measures on popular object detection benchmarks including PASCAL VOC and MS COCO. The code is available at https://github.com/ywx-hub/ALWA.
In face recognition, designing margin-based (e.g., angular, additive, additive angular margins) softmax loss functions plays an important role in learning discriminative features. However, these hand-crafted heuristic methods are sub-optimal because they require much effort to explore the large design space. Recently, an AutoML for loss function search method AM-LFS has been derived, which leverages reinforcement learning to search loss functions during the training process. But its search space is complex and unstable that hindering its superiority. In this paper, we first analyze that the key to enhance the feature discrimination is actually textbf{how to reduce the softmax probability}. We then design a unified formulation for the current margin-based softmax losses. Accordingly, we define a novel search space and develop a reward-guided search method to automatically obtain the best candidate. Experimental results on a variety of face recognition benchmarks have demonstrated the effectiveness of our method over the state-of-the-art alternatives.
114 - Xue Yang , Junchi Yan , Qi Ming 2021
Boundary discontinuity and its inconsistency to the final detection metric have been the bottleneck for rotating detection regression loss design. In this paper, we propose a novel regression loss based on Gaussian Wasserstein distance as a fundament al approach to solve the problem. Specifically, the rotated bounding box is converted to a 2-D Gaussian distribution, which enables to approximate the indifferentiable rotational IoU induced loss by the Gaussian Wasserstein distance (GWD) which can be learned efficiently by gradient back-propagation. GWD can still be informative for learning even there is no overlapping between two rotating bounding boxes which is often the case for small object detection. Thanks to its three unique properties, GWD can also elegantly solve the boundary discontinuity and square-like problem regardless how the bounding box is defined. Experiments on five datasets using different detectors show the effectiveness of our approach. Codes are available at https://github.com/yangxue0827/RotationDetection.
We present a simple yet effective progressive self-guided loss function to facilitate deep learning-based salient object detection (SOD) in images. The saliency maps produced by the most relevant works still suffer from incomplete predictions due to the internal complexity of salient objects. Our proposed progressive self-guided loss simulates a morphological closing operation on the model predictions for progressively creating auxiliary training supervisions to step-wisely guide the training process. We demonstrate that this new loss function can guide the SOD model to highlight more complete salient objects step-by-step and meanwhile help to uncover the spatial dependencies of the salient object pixels in a region growing manner. Moreover, a new feature aggregation module is proposed to capture multi-scale features and aggregate them adaptively by a branch-wise attention mechanism. Benefiting from this module, our SOD framework takes advantage of adaptively aggregated multi-scale features to locate and detect salient objects effectively. Experimental results on several benchmark datasets show that our loss function not only advances the performance of existing SOD models without architecture modification but also helps our proposed framework to achieve state-of-the-art performance.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا