ﻻ يوجد ملخص باللغة العربية
Increasing demand for algorithms that can learn quickly and efficiently has led to a surge of development within the field of artificial intelligence (AI). An important paradigm within AI is reinforcement learning (RL), where agents interact with environments by exchanging signals via a communication channel. Agents can learn by updating their behaviour based on obtained feedback. The crucial question for practical applications is how fast agents can learn to respond correctly. An essential figure of merit is therefore the learning time. While various works have made use of quantum mechanics to speed up the agents decision-making process, a reduction in learning time has not been demonstrated yet. Here we present a RL experiment where the learning of an agent is boosted by utilizing a quantum communication channel with the environment. We further show that the combination with classical communication enables the evaluation of such an improvement, and additionally allows for optimal control of the learning progress. This novel scenario is therefore demonstrated by considering hybrid agents, that alternate between rounds of quantum and classical communication. We implement this learning protocol on a compact and fully tunable integrated nanophotonic processor. The device interfaces with telecom-wavelength photons and features a fast active feedback mechanism, allowing us to demonstrate the agents systematic quantum advantage in a setup that could be readily integrated within future large-scale quantum communication networks.
Finding optical setups producing measurement results with a targeted probability distribution is hard as a priori the number of possible experimental implementations grows exponentially with the number of modes and the number of devices. To tackle th
Over the past few years several quantum machine learning algorithms were proposed that promise quantum speed-ups over their classical counterparts. Most of these learning algorithms either assume quantum access to data -- making it unclear if quantum
We present a collision model for the charging of a quantum battery by identical nonequilibrium qubit units. When the units are prepared in a mixture of energy eigenstates, the energy gain in the battery can be described by a classical random walk, wh
We propose a method of accelerating the speed of evolution of an open system by an external classical driving field for a qubit in a zero-temperature structured reservoir. It is shown that, with a judicious choice of the driving strength of the appli
We achieve a quantum speed-up of fully polynomial randomized approximation schemes (FPRAS) for estimating partition functions that combine simulated annealing with the Monte-Carlo Markov Chain method and use non-adaptive cooling schedules. The improv