ﻻ يوجد ملخص باللغة العربية
Over the past few years several quantum machine learning algorithms were proposed that promise quantum speed-ups over their classical counterparts. Most of these learning algorithms either assume quantum access to data -- making it unclear if quantum speed-ups still exist without making these strong assumptions, or are heuristic in nature with no provable advantage over classical algorithms. In this paper, we establish a rigorous quantum speed-up for supervised classification using a general-purpose quantum learning algorithm that only requires classical access to data. Our quantum classifier is a conventional support vector machine that uses a fault-tolerant quantum computer to estimate a kernel function. Data samples are mapped to a quantum feature space and the kernel entries can be estimated as the transition amplitude of a quantum circuit. We construct a family of datasets and show that no classical learner can classify the data inverse-polynomially better than random guessing, assuming the widely-believed hardness of the discrete logarithm problem. Meanwhile, the quantum classifier achieves high accuracy and is robust against additive errors in the kernel entries that arise from finite sampling statistics.
Increasing demand for algorithms that can learn quickly and efficiently has led to a surge of development within the field of artificial intelligence (AI). An important paradigm within AI is reinforcement learning (RL), where agents interact with env
Design of new experiments, as well as upgrade of ongoing ones, is a continuous process in the experimental high energy physics. Since the best solution is a trade-off between different kinds of limitations, a quick turn over is necessary to evaluate
State-of-the-art classical neural networks are observed to be vulnerable to small crafted adversarial perturbations. A more severe vulnerability has been noted for quantum machine learning (QML) models classifying Haar-random pure states. This stems
We present a collision model for the charging of a quantum battery by identical nonequilibrium qubit units. When the units are prepared in a mixture of energy eigenstates, the energy gain in the battery can be described by a classical random walk, wh
We operate a superconducting quantum processor consisting of two tunable transmon qubits coupled by a swapping interaction, and equipped with non destructive single-shot readout of the two qubits. With this processor, we run the Grover search algorit