ﻻ يوجد ملخص باللغة العربية
Using determinant Quantum Monte Carlo, we compare three methods of evaluating the dc Hall coefficient $R_H$ of the Hubbard model: the direct measurement of the off-diagonal current-current correlator $chi_{xy}$ in a system coupled to a finite magnetic field (FF), $chi_{xy}^{text{FF}}$; the three-current linear response to an infinitesimal field as measured in the zero-field (ZF) Hubbard Hamiltonian, $chi_{xy}^{text{ZF}}$; and the leading order of the recurrent expansion $R_H^{(0)}$ in terms of thermodynamic susceptibilities. The two quantities $chi_{xy}^{text{FF}}$ and $chi_{xy}^{text{ZF}}$ can be compared directly in imaginary time. Proxies for $R_H$ constructed from the three-current correlator $chi_{xy}^{text{ZF}}$ can be determined under different simplifying assumptions and compared with $R_H^{(0)}$. We find these different quantities to be consistent with one another, validating previous conclusions about the close correspondence between Fermi surface topology and the sign of $R_H$, even for strongly correlated systems. These various quantities also provide a useful set of numerical tools for testing theoretical predictions about the full behavior of the Hall conductivity for strong correlations.
Since its experimental discovery, many phenomenological theories successfully reproduced the rapid rise from $p$ to $1+p$ found in the Hall number $n_H$ at the critical doping $p^*$ of the pseudogap in superconducting cuprates. Further comparison wit
We study the ground state properties of the Hubbard model on a 4-leg cylinder with doped hole concentration per site $deltaleq 12.5%$ using density-matrix renormalization group. By keeping a large number of states for long system sizes, we find that
The repulsive Hubbard model has been immensely useful in understanding strongly correlated electron systems, and serves as the paradigmatic model of the field. Despite its simplicity, it exhibits a strikingly rich phenomenology which is reminiscent o
We present determinant quantum Monte Carlo simulations of the hole-doped single-band Hubbard-Holstein model on a square lattice, to investigate how quasiparticles emerge when doping a Mott insulator (MI) or a Peierls insulator (PI). The MI regime at
The dualism between superconductivity and charge/spin modulations (the so-called stripes) dominates the phase diagram of many strongly-correlated systems. A prominent example is given by the Hubbard model, where these phases compete and possibly coex