ﻻ يوجد ملخص باللغة العربية
We study the ground state properties of the Hubbard model on a 4-leg cylinder with doped hole concentration per site $deltaleq 12.5%$ using density-matrix renormalization group. By keeping a large number of states for long system sizes, we find that the nature of the ground state is remarkably sensitive to the presence of next-nearest-neighbor hopping $t$. Without $t$ the ground state of the system corresponds with the insulating filled stripe phase with long-range charge-density-wave (CDW) order and short-range incommensurate spin correlations appears. However, for a small negative $t$ a phase characterized by coexisting algebraic d-wave superconducting (SC)- and algebraic CDW correlations. In addition, it shows short range spin- and fermion correlations consistent with a canonical Luther-Emery (LE) liquid, except that the charge- and spin periodicities are consistent with half-filled stripes instead of the $4 k_F$ and $2 k_F$ wavevectors generic for one dimensional chains. For a small positive $t$ yet another phase takes over showing similar SC and CDW correlations. However, the fermions are now characterized by a (near) infinite correlation length while the gapped spin system is characterized by simple staggered antiferromagnetic correlations. We will show that this is consistent with a LE formed from a weakly coupled (BCS like) d-wave superconductor on the ladder where the interactions have only the effect to stabilize a cuprate style magnetic resonance.
We determine the ground-state phase diagram of the three-band Hubbard model across a range of model parameters using density matrix embedding theory. We study the atomic-scale nature of the antiferromagnetic (AFM) and superconducting (SC) orders, exp
We study the phase diagram of the frustrated Heisenberg model on the triangular lattice with nearest and next-nearest neighbor spin exchange coupling, on 3-leg ladders. Using the density-matrix renormalization-group method, we obtain the complete pha
We investigate a spin-$1/2$ two-leg honeycomb ladder with frustrating next-nearest-neighbor (NNN) coupling along the legs, which is equivalent to two $J_1$-$J_2$ spin chains coupled with $J_perp$ at odd rungs. The full parameter region of the model i
Two-dimensional density-matrix renormalization group method is employed to examine the ground state phase diagram of the Hubbard model on the triangular lattice at half filling. The calculation reveals two discontinuities in the double occupancy with
Using the dynamical mean-field approximation we investigate formation of excitonic condensate in the two-band Hubbard model in the vicinity of the spin-state transition. With temperature and band filling as the control parameters we realize all symme