ﻻ يوجد ملخص باللغة العربية
Positive-unlabeled learning refers to the process of training a binary classifier using only positive and unlabeled data. Although unlabeled data can contain positive data, all unlabeled data are regarded as negative data in existing positive-unlabeled learning methods, which resulting in diminishing performance. We provide a new perspective on this problem -- considering unlabeled data as noisy-labeled data, and introducing a new formulation of PU learning as a problem of joint optimization of noisy-labeled data. This research presents a methodology that assigns initial pseudo-labels to unlabeled data which is used as noisy-labeled data, and trains a deep neural network using the noisy-labeled data. Experimental results demonstrate that the proposed method significantly outperforms the state-of-the-art methods on several benchmark datasets.
Learning with noisy labels has attracted a lot of attention in recent years, where the mainstream approaches are in pointwise manners. Meanwhile, pairwise manners have shown great potential in supervised metric learning and unsupervised contrastive l
Semi-supervised node classification, as a fundamental problem in graph learning, leverages unlabeled nodes along with a small portion of labeled nodes for training. Existing methods rely heavily on high-quality labels, which, however, are expensive t
Learning with noisy labels is an important and challenging task for training accurate deep neural networks. Some commonly-used loss functions, such as Cross Entropy (CE), suffer from severe overfitting to noisy labels. Robust loss functions that sati
Learning reward functions from data is a promising path towards achieving scalable Reinforcement Learning (RL) for robotics. However, a major challenge in training agents from learned reward models is that the agent can learn to exploit errors in the
A deep neural network trained on noisy labels is known to quickly lose its power to discriminate clean instances from noisy ones. After the early learning phase has ended, the network memorizes the noisy instances, which leads to a significant degrad