ترغب بنشر مسار تعليمي؟ اضغط هنا

Class2Simi: A Noise Reduction Perspective on Learning with Noisy Labels

262   0   0.0 ( 0 )
 نشر من قبل Tongliang Liu
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Learning with noisy labels has attracted a lot of attention in recent years, where the mainstream approaches are in pointwise manners. Meanwhile, pairwise manners have shown great potential in supervised metric learning and unsupervised contrastive learning. Thus, a natural question is raised: does learning in a pairwise manner mitigate label noise? To give an affirmative answer, in this paper, we propose a framework called Class2Simi: it transforms data points with noisy class labels to data pairs with noisy similarity labels, where a similarity label denotes whether a pair shares the class label or not. Through this transformation, the reduction of the noise rate is theoretically guaranteed, and hence it is in principle easier to handle noisy similarity labels. Amazingly, DNNs that predict the clean class labels can be trained from noisy data pairs if they are first pretrained from noisy data points. Class2Simi is computationally efficient because not only this transformation is on-the-fly in mini-batches, but also it just changes loss computation on top of model prediction into a pairwise manner. Its effectiveness is verified by extensive experiments.



قيم البحث

اقرأ أيضاً

Deep Learning systems have shown tremendous accuracy in image classification, at the cost of big image datasets. Collecting such amounts of data can lead to labelling errors in the training set. Indexing multimedia content for retrieval, classificati on or recommendation can involve tagging or classification based on multiple criteria. In our case, we train face recognition systems for actors identification with a closed set of identities while being exposed to a significant number of perturbators (actors unknown to our database). Face classifiers are known to be sensitive to label noise. We review recent works on how to manage noisy annotations when training deep learning classifiers, independently from our interest in face recognition.
We study the robustness to symmetric label noise of GNNs training procedures. By combining the nonlinear neural message-passing models (e.g. Graph Isomorphism Networks, GraphSAGE, etc.) with loss correction methods, we present a noise-tolerant approa ch for the graph classification task. Our experiments show that test accuracy can be improved under the artificial symmetric noisy setting.
220 - Jun Shu , Qian Zhao , Keyu Chen 2020
Robust loss minimization is an important strategy for handling robust learning issue on noisy labels. Current robust loss functions, however, inevitably involve hyperparameter(s) to be tuned, manually or heuristically through cross validation, which makes them fairly hard to be generally applied in practice. Besides, the non-convexity brought by the loss as well as the complicated network architecture makes it easily trapped into an unexpected solution with poor generalization capability. To address above issues, we propose a meta-learning method capable of adaptively learning hyperparameter in robust loss functions. Specifically, through mutual amelioration between robust loss hyperparameter and network parameters in our method, both of them can be simultaneously finely learned and coordinated to attain solutions with good generalization capability. Four kinds of SOTA robust loss functions are attempted to be integrated into our algorithm, and comprehensive experiments substantiate the general availability and effectiveness of the proposed method in both its accuracy and generalization performance, as compared with conventional hyperparameter tuning strategy, even with carefully tuned hyperparameters.
87 - Lu Jiang , Di Huang , Mason Liu 2019
Performing controlled experiments on noisy data is essential in understanding deep learning across noise levels. Due to the lack of suitable datasets, previous research has only examined deep learning on controlled synthetic label noise, and real-wor ld label noise has never been studied in a controlled setting. This paper makes three contributions. First, we establish the first benchmark of controlled real-world label noise from the web. This new benchmark enables us to study the web label noise in a controlled setting for the first time. The second contribution is a simple but effective method to overcome both synthetic and real noisy labels. We show that our method achieves the best result on our dataset as well as on two public benchmarks (CIFAR and WebVision). Third, we conduct the largest study by far into understanding deep neural networks trained on noisy labels across different noise levels, noise types, network architectures, and training settings. The data and code are released at the following link: http://www.lujiang.info/cnlw.html
81 - Daiki Tanaka , Daiki Ikami , 2021
Positive-unlabeled learning refers to the process of training a binary classifier using only positive and unlabeled data. Although unlabeled data can contain positive data, all unlabeled data are regarded as negative data in existing positive-unlabel ed learning methods, which resulting in diminishing performance. We provide a new perspective on this problem -- considering unlabeled data as noisy-labeled data, and introducing a new formulation of PU learning as a problem of joint optimization of noisy-labeled data. This research presents a methodology that assigns initial pseudo-labels to unlabeled data which is used as noisy-labeled data, and trains a deep neural network using the noisy-labeled data. Experimental results demonstrate that the proposed method significantly outperforms the state-of-the-art methods on several benchmark datasets.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا